摘要
This letter presents a novel prediction scheme employed for fast visual tracking. The proposed multilinear predictor is formulated as a higher order tensor, instead of the existing vector representations. This predictor is based on emploing the Canonical/Parallel factors (CP) decomposition to decompose a tensor as a sum of rank one tensors. In that way, the proposed scheme efficiently retains the underlying structural information of the input data, while reduces at the same time the computational complexity by employing separable filter operations applied at different directions. The efficiency of the proposed scheme is demonstrated in the conducted experiments.
This letter presents a novel prediction scheme employed for fast visual tracking. The proposed multilinear predictor is formulated as a higher order tensor, instead of the existing vector representations. This predictor is based on emploing the Canonical/Parallel factors (CP) decomposition to decompose a tensor as a sum of rank one tensors. In that way, the proposed scheme efficiently retains the underlying structural information of the input data, while reduces at the same time the compu- tational complexity by employing separable filter operations applied at different directions. The effi- ciency of the proposed scheme is demonstrated in the conducted experiments.