期刊文献+

基于Toeplitz降维子矩阵的空间多目标跟踪算法

Tracking algorithm for multiple spatial targets based on Toeplitz submatrix of reducing dimension
下载PDF
导出
摘要 为了克服传统的移动多目标跟踪计算量大、实时性差的缺点,针对阵列天线提出新的多目标跟踪算法.该算法利用阵元接收数据构造空域Toeplitz矩阵,截取该矩阵的一个子矩阵,采用Lagrange极值定理迭代跟踪子矩阵的最小噪声特征向量.根据得到的噪声特征向量,估计空间多个移动目标的波达方向(DOA).该算法对原接收矩阵进行了降维,因而有效地降低了计算复杂度.此外,对数据进行的Toeplitz重构,使得降维后的子矩阵保留了所有阵元的接收信息.仿真结果表明,该算法不但可以处理相关信源,而且具有很好的空间分辨率,适合对目标源进行实时跟踪. A new multiple target tracking algorithm for array antenna was proposed in order to overcome the drawbacks of heavy computational cost and poor real-time performance of the traditional moving multiple targets' tracking.The spatial Toeplitz matrix was constructed by the elements' receiving data in the algorithm and one of its sub-matrix was selected to iteratively track the extreme minimum noise eigenvector based on the Lagrange's theorem.The directions of arrival(DOAs) of spatial multiple targets were estimated according to the corresponding noise eigenvector.Due to the reduced dimension of the original matrix,the algorithm effectively lowered the computational complexity.Moreover,the Toeplitz reconstruction of the data kept the reduced matrix preserving the information of all elements.Simulation results show that the algorithm is not only an efficient way to deal with the coherent sources but also has the high spatial resolution,and it is suitable for tracking the spatial fast moving targets in real-time.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第4期739-743,769,共6页 Journal of Zhejiang University:Engineering Science
基金 浙江省自然科学基金资助项目(Y1090232 Y6110639) 浙江省教育厅基金资助项目(Y201017322)
关键词 阵列天线 TOEPLITZ矩阵 特征空间 多目标跟踪 array antenna Toeplitz matrix eigenspace multiple target tracking
  • 相关文献

参考文献15

  • 1MIN S Y, SEO D Y, LEE K B, et al. Directionofarrival tracking scheme for DS/CDMA systems: direction lock loop [J]. IEEE Transactions on Wireless Communications, 2004, 3(1): 191-202.
  • 2DIAB W G, ELKAMCHOUCHI H M. DOA tracking in multipath environment based on the direction lock loop [C] ∥ IEEE International Conference on Signal Processing and Communications. Dubai: IEEE, 2007: 1099-1102.
  • 3KIKUCHI S H, SANO A. Accelerated adaptive algorithms with application to directionofarrival estimation by subspace tracking [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 200508, E88A(8): 2131-2142.
  • 4HOU S Y,HUNG H S,CHANG S H,et al. Novel algorithms for tracking multiple targets [J]. Journal of Marine Science and Technology, 2010, 18(2): 259-267.
  • 5CHAN S C, ZHANG Z G, ZHOU Y. A new adaptive Kalman filterbased subspace tracking algorithm and its application to DOA estimation [C]∥ IEEE International Symposium on Circuits and Systems. Island of Kos,Greece: IEEE, 2006: 129-132.
  • 6YANG B. Projection approximation subspace tracking [J]. IEEE Transactions on Signal Processing, 1995, 43(1): 95-107.
  • 7GU H. Optimal adaptive array and angle tracking for multiple targets: a reexamination of optimal array processing [C]∥ 4th IEEE Workshop on Sensor Array and Multichannel Processing. Waltham: IEEE, 2006: 171-175.
  • 8GU H. Angletracking adaptive array: adaptive array processing [C]∥ Radar Conference. Boston: [s.n.], 2007: 750-755.
  • 9FOUTZ J, SPANIAS A, BANAVAR S M. Narrowband direction of arrival estimation for antenna arrays [M]. [S.l.]: Morgan and Claypool Publishers, 2008.
  • 10ABEDMERAIM K, CHKEIF A, HUA Y. Fast orthonormal PAST algorithm [J]. IEEE Signal Processing Letters, 2000, 7(3): 60-62.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部