期刊文献+

乙炔氢氯化固定床反应器的模拟分析 被引量:6

Simulation and analysis of fixed-bed reactor for hydrochlorination of acetylene
下载PDF
导出
摘要 根据对乙炔氢氯化反应动力学以及工业装置实际运行状况的分析,建立固定床反应器拟均相二维有效扩散数学模型.结合中试经验数据,采用Crank-Nicholson方法求解方程并对工业固定床反应器进行模拟计算.模拟结果显示,计算所得固定床内温度和转化率分布与工业数据相符.利用模型计算结果分析发现,当催化剂活性水平较低时,乙炔空速和催化剂活性对反应结果有较大影响,将两者进行关联,可以建立不同催化剂活性水平下的最佳乙炔空速计算公式.通过对工业条件下不同管壁温度和不同反应管尺寸的模拟分析,可知现在工业上设置的管壁温度98℃和反应管尺寸51mm×3.5mm都是合理的. A two-dimensional pseudo-homogeneous dispersion model was employed according to the reaction kinetics and analysis of commercial reactor in order to describe and evaluate the operation conditions of industrial fixed-bed reactor for hydrochlorination of acetylene.The Crank-Nicholson method was used with experiential data from pilot-scale reactor in order to solve the equations.Results showed that the simulation results accorded well with the industrial data.Simulation results showed that the space velocity of acetylene and catalyst performance greatly influenced the distribution of reactor temperature and products when the catalyst activity was low.An expression of the optimum space velocity of acetylene can be deduced by considering the relationship between the space velocity of acetylene and the catalyst activity.The tube wall temperature 98 ℃ and tube size Φ51 mm×3.5 mm is rational at present use by simulation.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第4期749-755,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(20990221)
关键词 乙炔氢氯化 固定床反应器 反应器模拟 最佳空速 acetylene hydrochlorination fixed-bed reactor reactor simulation optimum space velocity
  • 相关文献

参考文献7

二级参考文献20

  • 1Calis, H. P. A., Nijenhuis, J., Paikert, B. C., Dautzenberg, F. M., & van den Bleek, C M. (2001). CFD modeling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing. Chemical Engineering Science, 56, 1713-1720.
  • 2Carman, P. C. (1937 ). Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers, 15. 150-166.
  • 3Chu, C, F., & Ng, K. M. (1989). Flow in packed bed tubes with small tube to particle diameter ratio. AIChEJoumal, 35, 148-158.
  • 4Coulson, J. M. (1949). The flow of fluids through granular beds: Effect of particle shape and voids in streamline flow. Transactions of the Institution of Chemical Engineers, 27, 237-257.
  • 5Dalman, M. T., Merkin, J. H., & McGreav,J, C. (1986). Fluid flow and heat transfer past two spheres in a cylindrical tube. Computers & Fluids, 14, 267-281.
  • 6Di Felice, R., & Gibilaro, L G. (2004). Wall effects for the pressure drop in fixed beds. Chemical Engineering Science, 59, 3037-3040.
  • 7Eisfeld, B., & Schnitzlein, K. (2001). The influence of confining walls on the pressure drop in packed beds. Chemical Engineering Science, 56, 4321-4329.
  • 8Ergun, S. (1952). Fluid flow through packed columns. Chemical Engineering Progress, 48. 89-94.
  • 9Foumeny, E. A., Benyahia, F., Castro, J. A. A., Moallemi, H. A., & Roshani. S. 0993). Correlations of pressure drop in packed beds taking into account the effect of confining wall. International Journal of Heat and Mass Transfer, 36, 536-540.
  • 10Guardo, A., Coussirat, M., Larrayoz, M. A., Recasens, F., & Egusquiza, E. (2005). Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds, Chemical Engineering Science,60, 1733-1742.

共引文献41

同被引文献58

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部