期刊文献+

基于简化非线性观测器的LuGre动态摩擦力补偿 被引量:2

Simple nonlinear observer based dynamic LuGre friction compensation
下载PDF
导出
摘要 针对机械手臂控制中使用LuGre模型进行动态摩擦力补偿时的内部摩擦力状态识别问题,在已有的非线性观测器和基于滑模的观测器的研究基础上,缩减非线性观测器中的冗余部分,提出简化非线性观测器.采用Lya-punov方法分析基于该观测器的自适应控制算法的稳定性,说明简化观测器的使用条件为加入合适的低通滤波器,消除速度采样高频波动对观测结果的影响.实验结果对比了3种内部摩擦力状态观测器在动态LuGre摩擦力补偿中对手臂控制效果的影响,采用3种观测器进行自适应跟踪控制时的位置跟踪精度分别可以达到0.010、0.009和0.004rad.实验表明,采用简化观测器可以取得比前2种观测器更好的自适应控制效果. Obtaining the internal bristle-deflection state of the LuGre model is difficult in the control design when using the LuGre model to achieve dynamic friction compensation in the manipulator control.The observation result differs while using different observers to get the state.A simple nonlinear observer,which is a simplification of De Wit's nonlinear observer,was developed.The stability of the adaptive control was analyzed using the second Lyapunov theory.A low-pass filter was added to remove the influence of the high frequency noise of joint velocities measurements.The tracking accuracy using the nonlinear observer,the sliding-mode based observer and the simple nonlinear observer were 0.010,0.009 and 0.004 rad respectively.The better position tracking performance with simple nonlinear observer was verified through a series of experimental results.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第4期764-769,共6页 Journal of Zhejiang University:Engineering Science
基金 国家"863"高技术研究发展计划资助项目(2008AA042602) 国家自然科学基金资助项目(60704030) 中央高校基本科研业务费专项资金资助项目(KYJD09035)
关键词 机械手 自适应控制 摩擦力补偿 LUGRE模型 非线性观测器 robot manipulator adaptive control friction compensation LuGre model nonlinear observer
  • 相关文献

参考文献14

  • 1KHAYATI K, BIGRAS P, DESSAINT L A. A multistage position/force control for constrained robotic systems with friction: jointspace decomposition, linearization, and multi objective observer/controller synthesis using LMI formalism [J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1698-1712.
  • 2DHAOUADI R. Torque control in harmonic drives with nonlinear dynamic friction compensation [J]. Journal of Robotics and Mechatronics, 2004, 16(4): 388-396.
  • 3ARMSTRONGHELOUVRY B, DUPONT P, DE WIT C C. A survey of models, analysis tools and compensation methods for the control of machines with friction [J]. Automatica, 1994, 30(7): 1083-1138.
  • 4WANG Hongli, WANG Xia, TANG Yujun. Robot friction compensation based on neural network [C]∥2nd International Conference on Computer Engineering and Technology (ICCET). Chengdu: [s.n.], 2010: 304-307.
  • 5TAN Yaolong, CHANG Jie, TAN Hualin. Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties [J]. IEEE Transactions on Industrial Electronics, 2003, 50(5): 944-952.
  • 6DE WIT C C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction [J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.
  • 7ZHU Yongliang, PAGILLA P R. Static and dynamic friction compensation in trajectory tracking control of robots [C]∥IEEE International Conference on Robotics and Automation. Washington DC: IEEE, 2002: 2644-2649.
  • 8ASTROM K J, DE WIT C C. Revisiting the LuGre friction model [J]. IEEE Control Systems Magazine, 2008, 28(6): 101114.
  • 9TAN Yaolong, KANELLAKOPOULOS I. Adaptive non linear friction compensation with parametric uncertainties [C]∥ Proceedings of American Control Conference. San Diego: [s.n.], 1999: 2511-2515.
  • 10XIE Wenfang. Slidingmodeobserverbased adaptive control for servo actuator with friction [J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1517-1527.

同被引文献20

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部