期刊文献+

微生物燃料电池利用乳酸产电性能与微生物群落分布特征 被引量:6

Electricity generation from lactate using microbial fuel cell and the distribution characteristics of anode microbial community
原文传递
导出
摘要 【目的】为探讨以乳酸为基质的微生物燃料电池(Microbial fuel cell,MFC)产电性能以及微生物群落在阳极膜、悬浮液、阳极沉淀污泥中的分布特征,【方法】试验建立了双室MFC,以乳酸为阳极主要碳源,研究了反应器的启动过程及产电效能,同时以电镜和PCR-变性梯度凝胶电泳(Denaturing gradient gelelectrophoresis,DGGE)技术解析了微生物群落的空间分布特征。【结果】结果表明,反应器启动第7天时外电压达到0.56 V,当外阻为80Ω时,电流密度为415 mA/m2,MFC的功率密度达到最大值82 mW/m2。电镜观察发现大量杆菌附着在阳极表面,结合较为紧密;DGGE图谱显示阳极膜表面微生物与种泥最为相似,与阳极悬浮液、底部沉淀污泥中的主要菌群一致,条带序列与睾丸酮丛毛单胞菌(Comamonas testosteroni)和布氏弓形菌(Arcobacter butzleri)等最为相似。【结论】本研究表明以乳酸为基质MFC可产生较高的功率密度,阳极附着的优势菌与接种污泥来源密切相关。 [ Objective] Two-chamber microbial fuel cells (MFCs) were set up to understand the electrogenic capacity of MFCs fed with lactic acid to investigate the distribution characteristics of mieroflora in the anode biofilm, supernatant, and sediment. [ Methods] Using lactic acid as a carbon source in the anode, we explored the MFCs start-up process and the efficiency of electricity production, and also investigated the spatial distribution of microbial communities using scanning electron microscope (SEM) and PCR-denaturing gradient gel electrophoresis (DGGE) techniques. [ Results~ The results indicate that the MFCs reached the highest voltage, 0.56 V on the seventh day after startup. When external resistance and current density was 80 ~ and 415 mA/m2, respectively, the power density reached its maximum at 82 mW/m2. SEM revealed that a massive bacillus was attached tightly to the surface of the positive electrode. DGGE profiles revealed that microorganisms on the anode's surface were most similar to that of inoculated sludge, consistent with the major microorganism groups in anode suspension and sludge substrate. Communities developed on the anodes included exoelectrogenic bacteria, i.e. Comamonas testosterone, and Arcobacter butzleri. [ Conclusion] This research demonstrates that MFCs fed with lactic acid can generate a high efficiency of current density, and that the dominant microbes on the anodes are similar to that of inoculated sludge
出处 《微生物学报》 CAS CSCD 北大核心 2012年第6期744-752,共9页 Acta Microbiologica Sinica
基金 山东省优秀中青年科学家科研奖励基金(BS2011NJ018) 国家自然科学基金(40801193)~~
关键词 微生物燃料电池 乳酸 变性梯度凝胶电泳 细菌群落 microbial fuel cell, lactic acid, denaturing gradient gel electrophoresis, bacterial community
  • 相关文献

参考文献31

  • 1Lovley DR. Microbial fuel cells: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology, 2006, 17 (3) : 327-332.
  • 2Liu H, Cheng S, Logan BE. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 2005, 39 (2) :658-662.
  • 3Rabaey K, Clauwaert P, Aeherman P, Verstraete W. Tubular microbial fuel cells for efficient electricity generation. Environmental Science & Technology, 2005, 39 ( 20 ) : 8077-8082.
  • 4Oh S, Logan BE. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research, 2005, 39(19) : 4673-4682.
  • 5Teng SX, Tong ZH, Li WW, Wang SG, Sheng GP, Shi XY, Liu XW, Yu HQ. Electricity generation from mixed volatile fatty acids using microbial fuel cel|s. Applied Microbiology and Biotechnology, 2010, 87 (6) : 2365- 2372.
  • 6Freguia S, Teh EH, Boon N, Leung KM, Keller J, Rabaey K. Microbial fuel cells operating on mixed fatty acids. Bioresource Technology, 2010, 101 (4): 1233- 1238.
  • 7Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 2004, 70(9): 5373-5382.
  • 8Zuo Y, Xing D, Regan JM, Logan BE. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-I by using a U-tube microbial fuel cell. Applied and Environmental Microbiology, 2008, 74 ( 10 ) : 3130-3137.
  • 9Logan B. Exoelectrogenic bacteria that power microbial fuel cel|s. Nature Reviews Microbiology, 2009, 7 (5) :375-381.
  • 10Balch WE, Fox GE,Magrum LJ, Woese CR, Wolfe RS. Methanogens: Reevaluation of a unique biological group. Microbiological Reviews, 1979, 43 (2) : 260-296.

二级参考文献58

  • 1尤世界,赵庆良,姜珺秋.废水同步生物处理与生物燃料电池发电研究[J].环境科学,2006,27(9):1786-1790. 被引量:53
  • 2Lovley DR. Microbial fuel cells: novel microbial physiologies and engineering approaches. Current Opinion in Biotechnology, 2006, 17: 327-332.
  • 3Ringeisen BR, Henderson E, Wu PK, et al. High powerdensity from aminiature microbial fuel cell using Shewanella oneidensis DSP10. Environ Sci Technol, 2006, 40 2629-2634.
  • 4Biffinger JC, Byrd JN, Dudley BL, et al. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosensors and Bioelectronics, 2008, 23: 820-826.
  • 5Kim BH, Kim H J, Hyun MS, et al. Direct electrode reaction of Fe(Ⅲ)-reducing bacterium Shewanella putrefactions. Microbiol Biotechol, 1999, 9: 127-131.
  • 6Kim HJ, Park HS, Hyun MS. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefactions. Enzyme Microbiol Technol, 2002, 30: 145-152.
  • 7Heidelberg JF, Paulsen IT, Nelson KE, et al. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol, 2002, 20: 1118-1123.
  • 8Bretschger O, Obraztsova A, Sturm CA, et al. Current production and metal oxide reduction by Shewanella oneidensis MR-1 wild type and mutants. Appl Environ Microbiol, 2007, 11: 7003-7012.
  • 9Finneran KT, Johnsen CV, Lovley DR. Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(Ⅲ). Int J Syst Evol Microbial, 2003, 53: 669-673.
  • 10Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells. Nat Biotechnol, 2003, 21: 1229-1232.

共引文献78

同被引文献95

  • 1李永峰,任南琪,陈瑛,李建政,胡立杰,郑国香.发酵产氢细菌分离培养的厌氧实验操作技术[J].哈尔滨工业大学学报,2004,36(12):1589-1592. 被引量:34
  • 2刘志丹,周良,杜竹玮,李浩然.异化金属还原菌的研究进展[J].微生物学通报,2005,32(5):156-159. 被引量:9
  • 3洪义国,郭俊,孙国萍.产电微生物及微生物燃料电池最新研究进展[J].微生物学报,2007,47(1):173-177. 被引量:25
  • 4陆梅,毛玉荣,杨康林,夏泽芬,陈忠伦.沼液沼渣的利用[J].农技服务,2007,24(5):37-39. 被引量:21
  • 5王久臣,戴林,田宜水,秦世平.中国生物质能产业发展现状及趋势分析[J].农业工程学报,2007,23(9):276-282. 被引量:249
  • 6Logan B E, Hamelers B, Rozendal R A, et al. Microbial fuel cells: Methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192.
  • 7Logan B E. Scaling up microbial fuel cells and other bioelectrochemical systems[J]. Appl. Microbiol. BiotechnoL, 2010, 85(6): 1665-1671.
  • 8Zhang L H, Mao Y P, Ma J X, et al. Effect of the chemical oxidation demand to sulfide ratio on sulfide oxidation in microbial fuel cells treating sulfide-rich wastewater[J]. Environ. Technol., 2013, 34(2): 269-274.
  • 9Zhang J, Zhang B G, Tian C X, et al. Simultaneous sulfide removal and electricity generation with corn stover biomass as co-substrate in microbial fuel cells[J]. Bioresource Technol., 2013, 138:198-203.
  • 10Ieropoulos I A, Ledezma P, Stinchcombe A, Papaharalabos G, Melhuish C, Greenman J. Waste to real energy: the first MFC powered mobile phone[J]. Phys. Chem. Chem. Phys., 2013, 15(37): 15312-15316.

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部