期刊文献+

Effect of size on mechanical behavior of Au pillars by molecular dynamics study 被引量:7

Effect of size on mechanical behavior of Au pillars by molecular dynamics study
原文传递
导出
摘要 The influence of specimen size on the mechanical behavior of Au pillars is studied by means of molecular dynamics (MD) simulations with the EAM potential.Under compression at 300 K,as the deformation of pillars is in the plastic stage,nucleation of partial dislocations is observed.The coupling effect of surface stress and thermal activation is considered when analyzing the size effect on the yield property of the Au pillars.It appears that both the tensile stress component and the temperature in the surface layer impart significant effect on the mechanical behaviors of the nano-sized Au pillars. The influence of specimen size on the mechanical behavior of Au pillars is studied by means of molecular dynamics (MD) simulations with the EAM potential.Under compression at 300 K,as the deformation of pillars is in the plastic stage,nucleation of partial dislocations is observed.The coupling effect of surface stress and thermal activation is considered when analyzing the size effect on the yield property of the Au pillars.It appears that both the tensile stress component and the temperature in the surface layer impart significant effect on the mechanical behaviors of the nano-sized Au pillars.
作者 TANG QiHeng
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第6期1111-1117,共7页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China (Grant Nos.10872197,11021262,11172303,11132011)
关键词 分子动力学 力学行为 支柱 EAM势 试样尺寸 耦合效应 规模效应 表层温度 molecular dynamics simulation size effect dislocation compression
  • 相关文献

参考文献40

  • 1Nix W D, Gao H J. Indentation size effects in crystalline materials: A law for strain gradient plasticity. J Mech Phys Sol, 1998, 46:411425.
  • 2Ma Q, Clarke D R. Size-dependent hardness of silver single-crystals. J Mater Res, 1995, 10:853-863.
  • 3Uchic M D, Dimiduk DM, Florando J N, et al. Sample dimensions influence strength and crystal plasticity. Science, 2004, 305:986-989.
  • 4Fleck N A, Muller G M, Ashby M F, et al. Strain gradient plastici- ty-theory and experiment. Acta Metall Mater, 1994, 42:475-487.
  • 5Fleck N A, Hutchinson J W. Strain gradient plasticity. Adv Appl Mech, 1997, 33:295-361.
  • 6Gao H, Huang Y, Nix W D, et al. Mechanism-based strain gradient plasticity - I. Theor J Mech Phys Sol, 1999, 47:1239-1263.
  • 7Hwang K C, Jiang H, Huang Y, et al. A finite deformation theory of strain gradient plasticity. J Mech Phys Sol, 2002, 50:81-99.
  • 8Shan Z W, Mishra R K, Asif S A, et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater, 2008, 7:115-119.
  • 9Craighead H G. Nanoelectromechanical system. Science, 2000, 290: 1532-1535.
  • 10Komanduri R, Chandrasekaran N, Raft L M. Molecular dynamics simulation of uniaxial tension of some single-crystal cubic metals at nanolevel. Int J Mech Sci, 2001, 43:2237-2260.

同被引文献55

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部