期刊文献+

DKNNS:面向延迟敏感型应用的可扩展精确分布式K近邻搜索算法研究 被引量:1

DKNNS: Scalable and accurate distributed K nearest neighbor search for latency-sensitive applications
原文传递
导出
摘要 为了降低用户访问延迟,延迟敏感型网络应用需要选择合适的邻近服务节点响应用户访问请求.分布式K近邻搜索通过可扩展的选择距任意用户节点邻近的K个服务节点,可以有效满足网络应用延迟优化的目的.已有工作在精确度以及可扩展性等方面存在不足.针对可扩展精确的K近邻搜索问题,文中提出了分布式K近邻搜索方法DKNNS(distributed K nearest neighbor search).DKNNS将大量的服务节点组织为邻近性感知的多级环,通过最远节点搜索机制选择优化的K近邻搜索初始化节点,然后基于回退方式快速的在目标节点邻近区域发现K个近邻.基于理论分析,模拟测试以及真实环境下的部署实验发现,在不同规模的节点集合下,DKNNS算法能够确定近似最优的K个服务节点.且DKNNS的查询延迟,查询开销均显著低于Meridian算法.最后,DKNNS的返回结果相对于Meridian具有较高的稳定性. To reduce the access latencies of end hosts, latency-sensitive applications need to choose suitably close service machines to answer the access requests from end hosts. Distributed K nearest neighbor search locates K service machines closest to end hosts, which can efficiently optimize the access latencies for end hosts. Existing work has weakness in terms of the accuracy and scalability. According to the scalable and accurate K nearest neighbor search problem, we propose a distributed/( nearest neighbor search method called DKNNS in this paper. Service machines are organized into a locality-aware multilevel ring. DKNNS first locates a service machine that starts the search process based on a farthest neighbor search scheme, then discovers K nearest service machines based on a backtracking approach within the proximity region containing the target in the latency space. Theoretical analysis, simulation results and deployment experiments on the PlanetLab show that, DKNNS can determine K approximately optimal service machines, with modest completion time and query loads. Finally, DKNNS is also quite stable that can be used for reducing frequent searches by caching found nearest neighbors.
出处 《中国科学:信息科学》 CSCD 2012年第5期561-577,共17页 Scientia Sinica(Informationis)
基金 国家重点基础研究发展计划(批准号:2011CB302601) 国家自然科学基金(批准号:60873215) 湖南省自然科学杰出青年基金(批准号:S2010J5050) 高等学校博士学科点专项科研基金(批准号:200899980003)资助项目
关键词 延迟敏感型网络应用 K近邻搜索 网络坐标 网络测量 分布式系统 latency sensitive network applications, K nearest neighbor search, network coordinate, networkmeasurement, distributed system
  • 相关文献

参考文献10

  • 1Greenberg A,Hamilton J,Maltz D,et al.The cost of a cloud:research problems in data center networks[].Computer Communication Review.2009
  • 2Szigeti T,Hattingh C.Quality of service design overview[].Http://wwwciscopresscom/articles/articleasp?p=&seq Num=.2004
  • 3Choffnes D,Sanchez M,Bustamante F.Network positioning from the edge—an empirical study of the effectiveness of network positioning in P2P systems[].INFOCOM’’.2010
  • 4Wang G,Zhang B,Ng E.Towards network triangle inequality violation aware distributed systems[].Internet Measurement Comference.2007
  • 5Madhyastha H,Isdal T,Piatek M,et al.iPlane:an information plane for distributed services[].OSDI.2006
  • 6Xu Z,Sharma P,Lee S.Netvigator:scalable network proximity estimation. HP Laboratories Technical Report,HPL- 2004 -28 . 2004
  • 7Sharma P,Xu Z,Banerjee S,et al.Estimating network proximity and latency[].ACM SIGCOMM Computer Communication Review.2006
  • 8Waldvogel M,Rinaldi R.Efficient topology-aware overlay network[].SIGCOMM Comput Commun Rev.2003
  • 9Wendell P,Jiang W,Freedman M,et al.DONAR:decentralized server selection for cloud services[].SIGCOMM.2010
  • 10Vishnumurthy V,Francis P.On the difficulty of finding the nearest peer in P2P systems[].Internet Measurement Conference.2008

同被引文献7

  • 1Gogoi P, Borah B, Bhattaeharyya D K. Outlier identification using symmetric neighborhoodsJ]. Procedia Technology, 2012, 6 239-246.
  • 2Breunig M M, Kriegel H P, etal. IX)F:identifying density-based local outliers[-J. Proc. of 2000 ACM SIGMOD international conference on Management of data. ACM Sigmod Record, 2000, 29(2):93-104.
  • 3Hautamaki V, Karkkainen I. Outlier detection using k-nearest neighbor graphiC]//Proc. 17th IEEE Int. Conf. on Pattern Rec- ognition. 2004,3 : 430-433.
  • 4Angiulli, F, Palopoli L. Detecting outlying properties of excep- tional objects E J']. ACM Transaction on Database Systems, 2009,34(1):62-74.
  • 5Richard J, Chris (2. Fuzzy-rough nearest neighbor classification and prediction [J]. Theoretical Computer Science, 2011, 412(42) : 5871-5884.
  • 6PandyaD H, Upadhyay S H, Harsha S P. Fault diagnosis of rol- ling element bearing with intrinsic mode function of acoustic e- mission data using APF-kNNJ]. Expert Systems with Applica- tions,2013,40(10) :4137-4145.
  • 7Xu Yong, Zhu Qi, et al. Coarse to fine K nearest neighbor classi- fier FJ]. Pattern Recognition Letters, 2013,34(9) : 980-936.

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部