期刊文献+

基于SQP算法的SAR成像导引头三维弹道优化 被引量:10

3D Trajectory Optimization of the SAR Imaging Seeker Based on SQP
下载PDF
导出
摘要 弹载SAR平台轨迹的设计是研究弹载SAR成像算法的前提。为了在满足SAR成像条件的同时降低导弹打击时间,需要对SAR成像导引头的弹道进行优化。该问题属于非线性最优控制问题,本文采用序列二次规划(SQP)优化算法进行求解。首先以波束驻留时间最小为指标函数,导弹俯仰、偏航加速度为优化变量,建立了SAR成像导引头三维弹道优化模型,模型的约束包括SAR成像约束、过载约束和导弹飞行高度约束。然后,将原最优控制问题进行参数化,转换成非线性规划问题,利用SQP算法进行求解。参数化时,离散节点越多,得到的非线性规划问题规模越大,求解速度就越慢。仿真结果表明,SQP算法能够有效解决SAR成像导引头三维弹道优化问题,得到的解满足模型约束。 Trajectory design of the missile-borne SAR platform is the basis of the SAR imaging algorithm research. In order to decrease missile attacking time while satisfying the SAR imaging conditions, the SAR imaging seeker's trajectory needs to be optimized. This problem belongs to the nonlinear optimal control problem, and the sequential quadratic programming (SQP) optimization algorithm is used to slove it. Firstly, a 3D trajectory optimization model of the SAR imaging seeker is constructed. The contraints include the SAR imaging constraint, be overload contraint and the attitude eontraint. Furthermore, the original optimal control problem is transformed into a nonlinear programming problem, and then it is solved by the SQP algorithm. The more discreted nodes are, the biger the nonlinear programming problem scale is and the longer the solving time is. The simulation results show that, the SQP algorithm can effectively solve the trajectory optimization of the SAR seeker, and its solution satisfies all the model constraints.
出处 《计算机工程与科学》 CSCD 北大核心 2012年第4期145-150,共6页 Computer Engineering & Science
基金 中科院电子所预研基金资助项目
关键词 SAR成像 导引头 SQP 弹道优化 SAR imaging seeker SQP trajectory optimization
  • 相关文献

参考文献7

  • 1谢华英,范红旗,赵宏钟,付强.SAR成像导引头的弹道设计与优化[J].系统工程与电子技术,2010,32(2):332-337. 被引量:14
  • 2秦玉亮,王建涛,王宏强,黎湘.弹载合成孔径雷达技术研究综述[J].信号处理,2009,25(4):630-635. 被引量:32
  • 3张刚,祝明波,赵振波,李相平.弹载SAR应用模式及关键技术探讨[J].飞航导弹,2011(9):67-73. 被引量:11
  • 4Farooq A, Limebeer D J N. Optimal Trajectory Regulation for Radar Imaging Guidanee[J].Journal of Guidance, Control and Dynamics, 2008, 31(4) :1076-1092.
  • 5Hodgson J A, Lee D W. Terminal Guidance Using a Doppler Beam Sharpening Radar[C]//Proc of AIAA Guidance, Navigation and Control Conference and Exhibit, 2003:1-11.
  • 6The MathWorks Inc. Optimization Toolbox 6 User's Guide Version 6.0[M]. 2011.
  • 7MathewsJH,FinkKD.数值方法(matlab版)[M].周璐,陈渝,钱方,译.北京:电子工业出版社,2009.

二级参考文献43

共引文献44

同被引文献54

  • 1杨志刚,戚志锦,黄燕.智能车辆自由换道轨迹规划研究[J].重庆交通大学学报(自然科学版),2013,32(3):520-524. 被引量:22
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3王丽芳,曾建潮.基于微粒群算法与模拟退火算法的协同进化方法[J].自动化学报,2006,32(4):630-635. 被引量:33
  • 4Asif Farooq, David J N Limebeer. Trajectory Optimiza- tion for Air-to-Surface Missiles with Imaging Radars[ J]. Journal of Guidance, Control, and Dynamics, 2002, 25 (5) : 876 -887.
  • 5Asif Farooq, David J N Limebeer. Optimal Trajectory Regulation for Radar Imaging Guidance [ J ]. Journal of Guidance, Control, and Dynamics, 2008, 31 ( 4 ) :1076-1092.
  • 6eremy A Hodgson, David W Lee. Terminal Guidance [sing a Doppler Beam Sharpening Radar [ C ] //AIAA ',uidance, Navigation and Control Conference and , Lustin, Texas, America, 2003:1-11.
  • 7Jeremy A Hodgson. Trajectory Optimization Using Dif- ferential Inclusion to Minimize Uncertainty in Target Lo- cation Estimation [ C ] // AIAA Guidance, Navigation and Control Conference and Exhibit, San Francisco, Cal- ifornia, America, 5005:1-17.
  • 8ZHAO Hong-zhong, XIE Hua-ying, FU Qiang. Azimuth Resolution Acquisition through Trajectory Optimization for a SAR Seeker[ C] ffAPSAR, Xi' an, China, 2009 : 55 -59.
  • 9Geoffrey Todd Huntington. Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Con- trol Problems[ D1. America: Massachusetts Institute of Technology, 2007.
  • 10GARG D. Advances in Global Pseudospectral Methods for Optimal Control[ D ]. America: University of Flori-da, 2011.

引证文献10

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部