期刊文献+

中文新闻事件本体建模与自动扩充 被引量:14

Chinese News Event Ontology Construction and Auto-population
下载PDF
导出
摘要 针对中文新闻事件的语义层次自动理解问题,给出了新闻事件的定义,构造了一种基于本体的新闻事件模型NOEM。NOEM利用事件的类型、时间、空间、结构、因果、媒体六个方面特征描述新闻事件的5W1H(Who,What,Whom,When,WhereandHow)语义要素。将抽取的关键事件语义要素自动扩充到本体中后,可构成事件知识库支持事件语义层次的应用。与现有事件模型的比较以及实际应用结果显示,NOEM能够有效描述单个新闻文档中的关键事件、语义要素以及它们之间的关联,具有很强的形式化知识表达、应用集成和扩展能力。 Systematically and semantically modeling the 5W1H(What,Who,When,Where,Why and How) elements of a news article is a fundamental step towards automatic understanding of Chinese news events.In this paper,we propose an ontology-based event model,NOEM,which can semantically describe the 5W1H elements of an event and further organize them in the form of an ontology.The proposed model defines the concepts of entities(time,person,location,organization,etc.),events and their relationship in order to capture the different natures of news events,including temporal,spatial,causal aspects and so on.Additionally the well-organized event elements are essential for building an event knowledge base which can significantly facilitate online news browsing and managing in various applications.A comparison to the existing event models and an empirical case study show that NOEM can effectively model the semantic elements of news events and their relationship;and has a strong ability to represent the knowledge facts and easily adapt to new domains.
作者 王伟 赵东岩
出处 《计算机工程与科学》 CSCD 北大核心 2012年第4期171-176,共6页 Computer Engineering & Science
基金 高等学校博士学科点专项科研基金资助课题(20100001120029) 武警工程大学基础研究基金资助项目(WGY-201022)
关键词 5W1H 本体 事件模型 本体扩充 5W1H ontology event model ontology population
  • 相关文献

参考文献18

  • 1Chinchor N, Marsh E. MUC7 Information Extraction Task Definition (version 5. 1) [C]//Proe of MUC 7, 1998.
  • 2ACE (Automatic Content Extraction). Chinese Annotation Guidelines for Events [S]. National Institute of Standards and Technology, 2005.
  • 3Westermann U, JainR E. A Generic Event Model for Event Centric Multimedia Data Management in eChronicle Applica tions[C]//Proc of the 22nd Int' l Conf on Data Engineering Workshops (ICDEW'06), 2006 : 106-116.
  • 4Westermann U, Jain R. Towards a Common Event Model for Multimedia Applications[J]. IEEE MultiMedia, 2007,14 (1):19 29.
  • 5Lagoze C, Hunter J. The ABC Ontology and Model[C]// Proc of Int'l Conf on Dublin Core and Metadata Applications 2001, 2001:1-18.
  • 6Kiryakov A, Popov B, Kirilov A, et al. Semantic Annota tion, Indexing, and Retrieval[J]. Journal of Web Semantics, 2004,2(1):49 79.
  • 7Scherp A, Franz T, Saathoff C, et al. F-a Model of Events Based on the Foundational Ontology Dolce-l- DnS Ultralight [C]//Proe of the Fifth Int'l Conf on Knowledge Capture (K CAP), 2009:137- 144.
  • 8Carmagnola F. The Five WS in User Model Interoperability [C]//Proc of IUI 2008 Workshop on Ubiquitous User Modeling, 2008:1-6.
  • 9Miller G, Beckwith R, Fellbaum C, et al. Introduction to WordNet: An Online Lexical Database[J]. International Journal of Lexicography, 1990,3 (4) : 235-244.
  • 10Timberlake A. Aspect, Tense, Mood[J]. Language Typology and Syntactic Description, 2007(3):280-333.

二级参考文献23

共引文献17

同被引文献175

引证文献14

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部