期刊文献+

一种将人造物边界从自然背景中分离的新方法 被引量:6

A New Method of Filtering Edges of Men Made Objects from Nature Background
下载PDF
导出
摘要 对象的边界是图象识别的主要依据 ,但若对象处于一定的自然背景中 ,则自然背景的边界会给识别过程增加计算的负担 ,因此在识别前有必要将对象与背景的边界区别开 .该问题通常是通过基于“试探性阈值的方法”来解决 ,由于该方法未考虑边界点的局部特性 ,故该方法不能保留对象的细节 .为了解决这一问题 ,提出了一种将人造物边界从自然背景中分离出来的基于分形几何的新算法 .该算法基于对边界点的梯度强度阈值与曲线分形维数的考虑 ,用聚类分析的方法对边界点进行筛选 ,并利用以云 ,树丛为背景的飞机图象为实验对象 ,来验证该算法的有效性与优越性 .在这些例子中 ,可以看到大量自然背景的边界被滤掉了 ,而飞机的局部细节得到了保留 .最后又进一步探讨了该算法的适用范围 . The most important information for image identification is edges of objects. But when objects are seated among nature background, those edges of nature background will be a great burden to the identification process. So unnecessary edges must be removed before identification. In tradition, a method called “huerestic threshold” is used to reach that target. But it performs bad in preserving details of objects, because local information is not taken into account. According to fractal geometry, it is found that the fractal density of edges of men made objects is close to 1, while that of nature background is close to 0 or 2. Thus a novel method is proposed to fulfill the demand. This method integrates the consideration of both gradient strength of edge points and fractal density of curves, and uses cluster analysis for filter. In this paper, images of planes with cloud and forest as background are used to testify the effectiveness of the new method. From the experiment, it can be seen that most background edges are filtered, yet details of planes are preserved. so the method is beyond the function of the traditional method. At the end of this paper, the limit of this method is discussed.
出处 《中国图象图形学报(A辑)》 CSCD 2000年第5期406-410,共5页 Journal of Image and Graphics
关键词 分形维数 分形密度 边界提取 聚类分析 图象识别 Fractal dimension, Fractal density, Edge detecting, Clustering
  • 相关文献

参考文献5

二级参考文献15

  • 1张兴永.数学建模简明教程[M].徐州:中国矿业大学出版社,2003.
  • 2江涛.经济数学基础[M].广东:汕头大学出版社,2006.
  • 3课程教材研究所.常用数学软件[M].北京:人民教育出版社,2003.
  • 4叶云佳,刘剑,王禹.交巡警服务平台的设置与调度方案研究[J].工程数学学报(增刊一),2011(28):98-104.
  • 5但琦,韩中庚,杨廷鸿.交巡警服务平台的设置与调度模型[J].工程数学学报(增刊一),2011(28):105-115.
  • 6陈传章,金福临,数学分析第二版下册,北京:高等教育出版社,2006.4.
  • 7薛毅,陈立萍,编.R统计建模与R软件[M].北京:清华大学出版社,2014.
  • 8王晓峰.数学软件课程教学改革探索[J].重庆科技学院学报(社会科学版),2010(22):175-176. 被引量:8
  • 9王增波,周勇,彭仁忠.数据处理方法在数学建模竞赛中的应用[J].软件导刊,2015,14(1):200-201. 被引量:5
  • 10许洪睿.数学分析及数学软件在数学建模当中的应用探究[J].电子测试,2015,26(2):156-158. 被引量:5

共引文献9

同被引文献39

  • 1夏勇,赵荣椿,江泽涛.一种基于数学形态学的分形维数估计方法[J].中国图象图形学报(A辑),2004,9(6):760-766. 被引量:13
  • 2姜骊黎,史册,杨海波,姚庆栋.基于分形特征的人造目标的分割方法[J].浙江大学学报(工学版),2001,35(4):397-401. 被引量:2
  • 3段先云,邓学雄,左启阳.级进模刃孔图形复杂度的研究[J].工程图学学报,2006,27(5):94-97. 被引量:6
  • 4江捧岳.图像跟踪算法分析[J].火力与指挥控制,1998,23(2):17-23.
  • 5A. Broggi, Vision-Based Driving Assistance[J], IEEE Intelligent Systems, 1998, Nov/Dec, pp. 22-23.
  • 6Z. Xin, H. X. Yuc, Road detection and reconstruction fo rhighway application[J], in Second International Conferencc on Image and Graphics, SPIE Vol.4875, pp. 816-821, 2002.
  • 7Margrit Bctkc, Esin Haritaoglu. Real-time multiple vehicle ctcction and tracking from a moving vehicle[J],Machine Vision and Applications, 2000, 12: 69-83.
  • 8W. Kruger, Robust real-time ground plane motion ompensation from a moving vehicle[J], Machine Vision and Applications, 1999, 11: 203-212.
  • 9J. Badenas, M. Bober, Segmenting Traffic Scenes from Grey Level and Motion Information[J], Pattern Analysis & Applications, 2001, 4: 28-38.
  • 10A.Pcntland, Fractal-based description of natural scenes[J],IEEE Trans. Pattern Anal. Machine InteR., Vol. PAMI-6,pp. 661-674, 1984.

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部