期刊文献+

Hermite型非正规样本定理的一致截断误差与混淆误差估计

The Estimation of Uniform Truncation Error and Uniform Aliasing Error of Hermite Irregular Sampling Theorem
下载PDF
导出
摘要 估计了函数f(x)在具有某种衰减条件(存在s>0,使得f(x)≤C1/1+|x|s,f'(x)≤C2/1+|x|s,其中C1,C2为正常数)时,利用Hermite插值算子在非正规节点处进行插值重构所产生的一致截断误差与一致混淆误差的界。 Institute of Applied Mathematics of Xihua University,Chengdu 610039 China In this paper.,the estimation of uniform truncation error and uniform aliasing error of Hermite irregular sampling theorem are determined for functions with some decay properties:fx≤C1/1+|x|s,f'x≤C2/1+|x|s,for some s0,and two positive constants C1,C2.
出处 《西华大学学报(自然科学版)》 CAS 2012年第3期61-63,108,共4页 Journal of Xihua University:Natural Science Edition
基金 西华大学重点学科应用数学(XZD0910-09-1)
关键词 Hermite型非正规样本定理 截断误差 混淆误差 误差估计 Hermite irregular sampling theorem truncation error aliasing error error estimates
  • 相关文献

参考文献4

  • 1Shanon C E.A Mathematical Theory of Communication[J].Bell System Tech J,1984,27:379.
  • 2徐艳艳,张亚兰,陈广贵.HERMITE型非正规样本定理及其混淆误差估计[J].数学物理学报(A辑),2011,31(5):1220-1229. 被引量:1
  • 3陈广贵 塔实甫拉提.非正规样本定理的一致混淆误差.北京师范大学学报:自然科学版,1998,34:32-38.
  • 4Nikoslkii S M.Approximation of Function of Several Variablesand Embedding Theorem,Berlin Heidelbery[M].New York:Springer-Verlag,1975:136,190-193.

二级参考文献15

  • 1Butzer P L. A survey of the Whittaker Shannon sampling theorem and some of its extensions. J Math Res Exposition, 1983:185-212.
  • 2Shanon C E. A mathematical theory of communication. Bell System Tech J, 1948, 27:379.
  • 3Boas R P, Jr. Entire Functions. New York: Academic Press, 1954.
  • 4Fang G S. Whitaker Kotelnikov Shannon sampling theorem and alaising error. J Approx Theorey, 1996, 85:115-131.
  • 5Paley R, Wiener N. Fourier Transform in Complex Domain. Colloq Publ Vol 19. Providence: AMS, 1934.
  • 6Kadec M I. The exact value of the Paley-Wiener constant. Soviet Math Dokl, 1964, 5:559-561.
  • 7Sun W C, Zhou X W. On the stability of multivariate trigonometric systems. J Math Anal Appl, 1999, 235:159-167.
  • 8Splettstoser W. Error estimates for sampling approximation of non-bandlimited functions. Math Appl Sic, 1979, 1:127.
  • 9Wang J J, Fang G S. Marcinkiewicz-Zygmard type inequality with non-equidistant spaced sampling points and irregular sampling approximation of non-bandlimited functions. J Beijing Normal University (Natural Science), 1999, 35(2): 157.
  • 10Chen G G, Fang G S. Discrete characterization on the Paley-Wiener space with several variables. Acta Mathematicae Applicatae Sincia, 2000, 26(4): 396-403.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部