期刊文献+

石墨烯纳米片电场增强因子的模拟计算与对比 被引量:1

Numerical Simulation of Electric Field Enhancement Factor of Graphene Nanoflake
下载PDF
导出
摘要 石墨烯纳米片特殊的一维刀口状尖端赋予了其优异的电子场发射性能,而电场增强因子β是评价场发射性能的最重要参数,主要采用测定F-N曲线的实验方法进行推算.建立了形状为矩形薄片+半圆圆柱的石墨烯纳米片模型,竖直立于平行平板二极管的阴极上,利用电子束模拟软件EBS(Electron BeamSimulation)模拟计算了场发射装置的两极间的电场分布,由此决定石墨烯纳米片尖端的电场增强系数.研究了高度和顶端曲率半径变化对石墨烯纳米片电场增强因子的影响,根据计算数值拟合了电场增强系数的经验公式,提供了受形状控制的电场增强因子的数值范围,还与同尺寸的碳纳米管进行了比较,证实了本文的模型和计算模拟方法有效、可信. Graphene nano flake(GNF) features properties of electron emission due to its one-dimensional sharp edge.Field enhancement factor β is an important parameter for emission evaluation,which is usually obtained by F-N curve measurement.In this paper,the field enhancement at the end of a single GNF vertical to the plate was calculated with the software of Electron Beam Simulation(EBS).By polynomial regression and fit of the calculation data,an empirical expression was drawn.The effects of the height and edge curvature of the GNF on β were investigated.The efficient range of the GNF as a good emitter was studied.By comparing the GNT the CNT with the similar size,it was proved feasibility of the proposed model and calculation.
出处 《中北大学学报(自然科学版)》 CAS 北大核心 2012年第2期207-210,215,共5页 Journal of North University of China(Natural Science Edition)
基金 国家自然科学基金资助项目(50875207)
关键词 石墨烯纳米片 电场增强因子 数值模拟 场发射 graphene nanoflake field enhancement factor numerical simulation field emission
  • 相关文献

参考文献3

二级参考文献29

  • 1Iijima S. Helical microtubules of graphitic carbon [ J]. Nature, 1991, 354:56-58.
  • 2Heer W A, Chatelain D A. carbon nanotube field - emission electron source [ J]. Science, 1995, 270:1179 - 1180.
  • 3Rinzler AG, Hafner JH, Nikolaev P, et al. Unraveling nanotubes: field emission from an atomic wire [ J ]. Science, 1995, 269(5230):1550 - 3.
  • 4Wang Q H, Sedur A A, Lauerhaas J M, et al. A nanotube - based field - emission flat panel display [ J ]. Appl Phys Lett, 1998, 72 (22) : 2912 -2913.
  • 5Jung J E, Jin Y W, Choi J H, et al. Fabrication of triode - type field emission displays with high - density carbon - nanotube emitter arrays [ J ]. Physica B, 2002, 323 : 71 - 77.
  • 6Shi Y S, Zhu C - C, Wang Q, et al. Large area screen - printing cathode of CNT for FED [ J]. Diana Relat Mater, 2003, 12 (9): 1449-1452.
  • 7Li J, Lei W, Zhang X, et al. Field emission characteristic of screen -printed carbon nanotube cathode[ J ]. Appl Surf Sci, 2003, 220 (1 -4): 96 - 104.
  • 8Vink T J, Gillies M, Kriege J C, et al. Enhanced field emission from printed carbon nanotubes by mechanical surface modification [J]. Appl Phys Lett, 2003, 83 (17): 3552 - 3554.
  • 9Zeng Fan - Guang, Zhu Chang - Chun, Liu Xinghui, et al. A novel mechanical approach to improve the field emission characteristics of printed CNT films [ J ]. Materials Letters, 2006, 60: 2399- 2402.
  • 10Zhang J, Feng T, Yu W. Enhancement of field emission from hydrogen plasma processed carbon nanotubes [ J]. Diam Relat Mater, 2004, 13:54 - 59.

共引文献24

同被引文献56

  • 1胡静,李兴建,张峰,孙道兴,张宜恒.加压密闭氧化石墨烯/水性聚氨酯纳米复合材料的制备及阻燃性能[J].高分子材料科学与工程,2015,31(3):163-168. 被引量:8
  • 2Huang B R,Chan H W, Iou Sv et al. Structure and field emission of graphene layers on top of silicon nanowire arrays[J]. Appl Surf Sci, 2016,362:250.
  • 3Galiotis CvFrank 0, Koukaras E N,et al. Graphene mechanics: Current status and perspectives[J]. Annual Rev Chem Biomolecular Eng,2015,6: 121.
  • 4Mehrali M,Sadeghinezhad E,Rosen M Aver al. Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids[J]. Experimental Thermal Fluid Sci,2015,68: 100.
  • 5Hajlaoui M,Sediri Hs Pierucci Dvet al. High electron mobility in epitaxial trilayer graphene on off-axis SiC(OOOl)[J]. Scientific Reports, 2016,6:18791.
  • 6Morozov S V, Novoselov K S, Katsnelson M I, et al. Giant intrinsic carrier mobilities in graphene and its bilayer[J]. Phys Rev Lett, 2008,100(1):016602.
  • 7Vadukumpully S, Gupta J, Zhang y, et al. Functionalization of surfactant wrapped graphene nanosheets with alkylazides for enhanced dispersibility[J]. Nanoscale , 2011,3(1) : 303.
  • 8Kodali V K, Scrimgeour J, Kim S, et al. Nonperturbative chemical modification of graphene for protein micropatterning[J]. Langmuir: ACS J Surf Colloids, 2011 ,27(3) :863.
  • 9Ha H W,Choudhury A,Kamal Tv et al. Effect of chemical modification of graphene on mechanical, electrical. and thermal properties of polyimide/graphene nanocomposites[J]. ACS Appl Mater Interfaces,2012,4(9):4623.
  • 10Hwang Y H, Lee, Sun M K, Y ong J , et al. A new approach of structural and chemical modification on graphene electrodes for high-per- formance supercapacitors[J]. Carbon, 2016,100: 7.

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部