期刊文献+

k上G-分次范畴的局部化

Localization of G-graded Category over k
原文传递
导出
摘要 讨论k范畴,k上G-范畴,k上G-分次范畴在局部化下相应范畴的保持问题,考虑k上G-分次范畴的冲积范畴与局部化的关系,证明了[S-1]#G≌(#G)[S-1]. Mainly studies the preservation of κ category, G-category over κ, G-graded category.over κ under localization respectively, furthermore, the relation between smash product category of G-grade category over k and localization of category is considered, andthen the result &[S^-1] #G≌(&#G) [S^-1] is proved.
出处 《福建师范大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期1-5,共5页 Journal of Fujian Normal University:Natural Science Edition
基金 福建省教育厅资助项目(JB09088)
关键词 局部化 k范畴 G-分次范畴 localization κ category G-graded category
  • 相关文献

参考文献7

  • 1Robert M Fossum, Phillip A Griffith, Idun Reiten. Trivial extensions of Abelian categories[M]. Berlin-Heidelber New York: Springer-Verlag, 1975.
  • 2Cibils C, Eduardo N Marcos. Skew category, galois covering and smash product of a k-category[J]. Proc Amet Math Soc, 2006. 134: 39-50.
  • 3曾灿波,陈清华.k上G-分次范畴的平凡扩张[J].福建师范大学学报(自然科学版),2008,24(2):17-21. 被引量:6
  • 4Dragan Milicic. I.ectures on derived eategories[EB/OL], http ..//www. math. utah. edu/milicic/Eprints/dercat, pdf.
  • 5I.anes S M. Categories for the working mathematician [M]. New York: Springer-Verlag, 1998.
  • 6Nastasescus C, Oystaeyen F Van. Methods of graded rings [M]. Berlin-Heidelber New York: Springer-Verlag, 2004.
  • 7Frank W, Anderson Kent R Fuller. Rings and categories of modules [M]. New York: Spring-Verlag, 1992.

二级参考文献7

  • 1Robert M Fossum, Phillip A Griffith, Idun Reiten. Trivial extensions of abelian categories [M]. Berlin-HeidelbergNewYork: Springer-Verlag, 1975.
  • 2Claude Cibils, Eduardo N Marcos, Skew category, galois covering and smash product of a k-category [J]. Proc Amer MathSoc,2006, 134: 39-50.
  • 3Xu Fei, Representations of categories and their applications [D], School of Mathematics, University of Minnesota, 2006.
  • 4Nastasescus C, Oystaeyen F Van , Methods of graded rings [M]. Berlin-Heidelberg-NewYork: Springer-Verlag, 2004.
  • 5Frank W, Anderson Kent R Fuller. Rings and categories of modules (2nd edition) [M]. New York: Spring-Verlag, 1992.
  • 6Cohen M, Montgomery S. Group-graded rings, smash products and group actions [J]. Trans Amer Math Soc, 1984, 282: 237-258.
  • 7Ringel C M, Tame algebras and integral quadratic forms [M]. New York: Springer-Verlag, 1984.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部