期刊文献+

有限域上可验证随机数的快速构造及安全性分析

Fast Construction and Security Analysis of the Verifiable Random Numbers in the Finite Field
下载PDF
导出
摘要 利用有限域上的插值多项式来构造可验证随机数,并且结合Lagrange插值法与Newton插值法给出了可验证随机数的两种快速构造方法。此方法构造的可验证随机数,具有无误差、效率高的特点。然后对此可验证随机数的不可预测性和不可操控性等安全性进行了分析,最后通过算例验证了此方法的正确性。 Using the interpolation polynomials in the finite field, and adopting the Lagrange interpolation and Newton interpolation respectively, two methods of constructing verifiable random numbers, are proposed. They have the advantages of high efficiency and no error. Then their security attributes such as uncontrollability and unpredictability are analyzed. Finally some experiments are given to verify the correctness of the two methods.
出处 《计算机工程与科学》 CSCD 北大核心 2012年第5期35-39,共5页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60963024) 广西自然科学基金资助项目(0991079) 广西研究生教育创新计划资助项目(2010105950701M31)
关键词 可验证随机数 不可预测性 验证 不可操控性 插值多项式 verifiable random number unpredictability verification uncontrollability interpolation polynomial
  • 相关文献

参考文献14

  • 1Dodis Y, Yampolskiy A.A Verifiable Random Function with Short Proofs and Keys [C]∥Proc of PKC’05, 2005:416-431.
  • 2Lysyanskaya A.Unique Signatures and Verifiable Random Functions from the DH-DDH Separation[C]∥Proc of CRYPTO’02, 2002:597-612.
  • 3Dodis Y.Efficient Construction of (Distributed) Verifiable Random Functions[C]∥Proc of PKC’03, 2003:1-17.
  • 4Brakerski Z, Goldwasser S, Rothblum G N, et al.Weak Verifiable Random Functions[C]∥Proc of CRYPTO’09, 2009:558-576.
  • 5Hohenberger S, Waters B.Constructing Verifiable Random Functions with Large Input Spaces[C]∥Proc of EUROCRYPT’10, 2010:656-672.
  • 6凌征球.函数逼近中的Newton和Lagrange插值多项式[J].大学数学,2006,22(5):102-106. 被引量:6
  • 7袁学刚,何甲兴.关于一类插值多项式的最高收敛阶(英文)[J].工程数学学报,2001,18(3):117-120. 被引量:4
  • 8Xue gang - yuan, Ping Wei.On Two Revised Nodes of S.N.Bernstein Interpolation Process[J].Le Matematiche,2001(17):39-48.
  • 9Shadman Z, Kampermann H, Meyer T.Efficient Self-Healing Group Key Distribution with Revocation Capability[C]∥Proc of Conference on Computer and Communications Security,2003:231-240.
  • 10Kurnio H, Safavi N R,Wang Huaxiong, et al.Key Tree and Chinese Remainder Theorem Based Group Key Distribution Scheme[J].Journal of the Chinese Institute of Engineers,2009, 32(7):967-974.

二级参考文献15

  • 1盛中平,王晓辉.一般有重差商的显式公式[J].东北师大学报(自然科学版),2006,38(4):143-144. 被引量:4
  • 2Hildebrand F B.Introduction to Numerical Analysis[M].New York:McGraw-Hill,1956.
  • 3Schroeder H,Murthy V K,Krishnamurthy E V.Systolic algorithm for polynomial interpolation and related problems[J].Parallel Computing,1991,July:493-503.
  • 4Murthy V K,Krishnamurthy E V,Chen P.Systolic algorithm for rational interpolation and Pade approximation[J].Parallel Computing,1:75-83.
  • 5Jana P K,Sinha B P.Fast parallel algorithm for polynomial interpolation[J].Computers Math.Applic.,1995,29:85-92.
  • 6李晓梅 蒋增荣.并行计算[M].长沙:湖南科学技术出版社,1992..
  • 7徐萃薇.计算方法引论[M].北京:高等教育出版社,1987..
  • 8Zhang Yulei,计算数学,1997年,2卷,154页
  • 9Sun Xiehua,J Approx Theory,1994年,77卷,179页
  • 10Zhu Laiyi,数学杂志,1993年,1卷,136页

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部