期刊文献+

基于Adaboost的红外视频图像疲劳检测算法 被引量:4

An Algorithm of Fatigue Detection by Infrared Images Based on Adaboost
下载PDF
导出
摘要 针对以往疲劳检测算法普遍存在的受光照条件影响大、检测测速度慢以及可靠性差等问题,本文提出了一种基于Adaboost的疲劳表情快速检测算法。本文算法在不同环境光照的情况下,利用红外光源照明采集获得大量人脸红外图像样本。经过人脸检测定位以后,将人脸区域中眼睛、嘴巴这两个表情信息最集中的关键部位分割出来,用PCA方法分别提取两个子图块的形变特征,分别输入Adaboost训练得到两个分类器。检测时,待检测图像眼、嘴的特征分别通过相应分类器进行判别,将两个分类器的输出进行或运算得到最终的检测结果。该方法正确率高,速度快,具有很好的泛化能力和较强的鲁棒性,能够满足实时应用要求。 For the problem of the influence of the illumination and speed and reliability of the previous fatigue detection algorithms,this paper proposes a fast algorithm of fatigue detection based on Adaboost.A great lot of infrared face images have been gained in variable environmental illumination using infrared.After the face detection,the features of eyes'and mouths'shapes are extracted from these images using the PCA method.The Adaboost training procedure trains two classifiers to detect fatigue expression using these features.In the detecting procedure,the features of eyes and mouths to be detected are classified by the corresponding classifiers.Then doing the OR operation between the outputs of the classifiers gives the final result.This algorithm has not only high correct rate and fast speed but also a powerful ability to generally use robustness.And the response time of this algorithm satisfies the realtime requirements.
出处 《计算机工程与科学》 CSCD 北大核心 2012年第5期107-111,共5页 Computer Engineering & Science
基金 国家863计划资助项目(2008AA8012320A)
关键词 疲劳检测 红外图像 ADABOOST fatigue-detection infrared-image Adaboost
  • 相关文献

参考文献12

  • 1Grace R, Byrne V E, Bierman D M, et al. A Drowsy Driver Detection System for Heavy Vehicle[C]//Proc of the 17th Digital Avionics Systems Conference, 19 9 8 :1-8.
  • 2Gan L, Cui B, Wang W. Driver Fatigue Detection Based on Eye Tracking[C]//Proc of the 6th World Congress on Intel ligent Control and Automation, 2006:649-652.
  • 3Dong W, Wu X. Driver Fatigue Detection Based on The Dis- tance of Eyelid[C]//Proc of the IEEE Int'lWorkshop VLSI Design & Video Technology, 2005:365-368.
  • 4Horng W B, Chen C-Y, Chang Y, et al. Driver Fatigue De- tection Based on Eye Tracking and Dynamic Template Matc- hing[C]//Proc of the Int'l Conf on Networking, Sensing Control, 2004 :7-12.
  • 5Zhang Z, Zhang J. A New Real-Time Eye Tracking for Driv- er Fatigue Detection[C]//Proc of the 6th Int'l Conf on ITS Telecommunications, 2006 :8-11.
  • 6陈勇,黄琦,刘霞,张昌华.一种全天候驾驶员疲劳检测方法研究[J].仪器仪表学报,2009,30(3):636-640. 被引量:25
  • 7杨秋芬,桂卫华,胡豁生,周书仁.驾驶员疲劳驾驶中的眼睛定位创新算法[J].计算机工程与应用,2008,44(6):20-24. 被引量:9
  • 8Wang Q, Yang J, Ren M, et al. Driver Fatigue Detection: A Survey[C]//Pruc of the 6th World Congress on Intelligent Control and Automation, 2006:8587-8591.
  • 9Gu H, Ji Q. An Automated Face Reader for Fatigue Detec- tion[C]//Proc of the 6th IEEE Int'l Conf on Automatic Face and Gesture Recognition, 2004:111-116.
  • 10Viola P, Jones M J. Rapid Object Detection Using a Boos ted Cascade of Simple Features[J]. Computer Vision and Pattern Recognition, 2001(1) :511-518.

二级参考文献21

共引文献41

同被引文献31

  • 1Torkkola K, Massey N, Wood C. Driver inattention detectionthrough intelligent analysis of readily available sensors. Proc.of IEEE Conference on Intelligent Transportation Systems.Washington, DC. October 2004. 326-331.
  • 2Yang Q Lin Y,Bhattacharya P. A driver fatigue recognitionmodel using fusion of multiple features. IEEE InternationalConference on Systems, Man and Cybernetics. Hawai USA.October 2005.1777-1784.
  • 3Park S,Trivedi M. Driver activity analysis for intelligentvehicles: issues and development framework. Proc. of IEEEIntelligent Vehicles Symposium. Las Vegas, USA. June 2005.795-800.
  • 4D'Orazio T, Guaragnella C,Leo M, Distante A. A newalgorithm for ball recognition using circle Hough transformand neural classifier. Pattern Recognition, 2004,37: 393-408.
  • 5Flores MJ, Anningol JM, de la Escalera A. Driver drowsinesswarning system using visual information for both diurnal andnocturnal illumination Conditions. EURASI? Journal onAdvances in Signal Processing, 2010, Article ID 438205.
  • 6陈勇,黄琦,刘霞,张昌华.一种全天候驾驶员疲劳检测方法研究[J].仪器仪表学报,2009,30(3):636-640. 被引量:25
  • 7梁英宏.红外视频图像中的人体目标检测方法[J].红外与激光工程,2009,38(5):931-935. 被引量:13
  • 8潘晓东,李君羡.基于眼部行为的驾驶疲劳监测方法[J].同济大学学报(自然科学版),2011,39(2):231-235. 被引量:21
  • 9吴从中,贺伟,汤润森,刘扬.光照自适应的疲劳驾驶检测系统[J].电子测量与仪器学报,2012,26(1):60-66. 被引量:15
  • 10沈永增,胡立芳,冯继妙.多源信息融合在驾驶疲劳检测中的应用[J].计算机应用与软件,2012,29(2):272-274. 被引量:9

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部