期刊文献+

球形光声腔中二氧化碳的检测 被引量:8

Detection of CO_2 in the Spherical Photoacoustic Cell
下载PDF
导出
摘要 气体光声光谱技术是一种基于光声效应的微量气体检测技术,它具有高灵敏度、高选择性、大动态检测范围的优点,本文从理论上讨论了气体检测球形光声腔共振模式的声学特性,计算表明,与常用的圆柱形光声腔比较,球形光声腔不存在粘滞损耗,具有更好的检测特性;利用球形光声腔和二氧化碳激光器构成的气体光声检测系统,从实验上测量了球形光声腔的共振模式,与理论计算结果一致;实验结果表明注入浓度为300 ppm二氧化碳的球形光声腔所激发的光声信号为5.68 mV,信噪比高达45,尽可能地降低了声波在光声腔内壁附近的热损耗和粘滞损耗,提高了二氧化碳气体检测灵敏度。 photoacoustic spectroscopy is a trace gas detection technology based on photoacoustic effect. It has advantages of high sensitivity, high selectivity and large dynamic range. This paper discusses the theoretical acoustic characters of a spherical photoacoustic cell, the calculation shows that the spherical cell has less viscous loss and better detection characteristics compared to the commonly used cylinder shape cell;the acoustic characters of a spherical photoacoustic cell was tested in the detection system composed by the spherical photoacoustic cell and carbon dioxide laser, results show that the experiment is consistent with the theoretic, and that the photoacoustic signal generated by the 300 ppm carbon dioxide in the spherical cell is 5.68 mV and high signal-to-noise (S/N) values ( - 45 : 1 ). This cell can reduce the heat loss and viscous loss near its wall as much as possible to improve the carbon dioxide detecting sensitivity.
出处 《传感技术学报》 CAS CSCD 北大核心 2012年第3期289-292,共4页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金项目(60971071) 国家863高新技术研究与开发项目基金项目(2007AA042104) 国家基础研究基金项目(2011CB302100)
关键词 光声光谱 球形光声池 气体检测 激光技术 photoacoustic spectroscopy spherical photoacoustic cell gas detetion laser technology
  • 相关文献

参考文献12

  • 1Rosencwaig A. Photoacoustics and Photoacoustic Spectroscopy [ M ]. John Wiley & Sons,1980.
  • 2Greig F, Johnston E M, Binnie B D. A PC Based Photo-Acoustic Instrumentation System [ J ]. IEEE Transactions on Ultrasonics Symposium, 1994 : 1333-1336.
  • 3John F, Clelland M C. Condensed Matter Photoacoustic Spectroscopy and Detection Using Gas Phase Signal Generation [ J ]. IEEE Transactions on Ultrasonics symposium, 1980:610-617.
  • 4陈星旦.近红外光谱无创生化检验的可能性[J].光学精密工程,2008,16(5):759-763. 被引量:51
  • 5WAN J K S,IOFFE M S, DEPEW M C. Novel Acoustic SensingSystem for on-Line Hydrogen Measurements [ J ]. IEEE Transactions, 1995:233-237.
  • 6叶松,方勇华,洪津,杨伟锋,乔延利.空间外差光谱仪系统设计[J].光学精密工程,2006,14(6):959-964. 被引量:40
  • 7Mattiello M, Nikls M,Schilt S,et al. Novel Helmholtz-Based Pho- toacoustic Sensor for Trace Gas Detection at ppm Level Using GalnAsSb/GaAIAsSb DFB lase [ J ]. Spectrochim. Acta, Part A, 2006,63 (5) :952-958.
  • 8David A Heaps, Paul M Pellegrino. Examination of Quantum Cascade Laser Source for a MEMSscale Photoacoustic ChemicalSensor [ C ]//Proc. of SPIE2006 ,6218 ,621805.
  • 9Paul M Pellegrino, Ronald G Polcawieh. Advancement of a MEMS Photoacoustic Chemical Sensor [ C ]//Proc. of SPIE, 2003,5085, 52-63.
  • 10Schjlberg-Henriksen K, Wang D T, Rogne H. High-Resolution Pressure Sensor for Photo Acoustic Gas Detection[ J ]. Sensors and Actuators A ,2006,132:207-213.

二级参考文献30

  • 1肖功海,舒嵘,薛永祺.显微高光谱成像系统的设计[J].光学精密工程,2004,12(4):367-372. 被引量:35
  • 2李刚,李尚颖,林凌,王焱,李晓霞,卢志杨.基于动态光谱的脉搏血氧测量精度分析[J].光谱学与光谱分析,2006,26(10):1821-1824. 被引量:17
  • 3SUZUKI D.Attainment of high resolution holographic Fourier transform spectroscopy[J].Appl.Opt.,1971,10:1137-1140.
  • 4ROESLER F L,HARLANDER J.Spatial heterodyne spectroscopy:interferometric performance at any wavelength without scanning[J].SPIE,1990,1318:234-243.
  • 5HARLANDER J.Spatial heterodyne spectroscopy:interferometric performance at any wavelength without scaning[D].USA:University of Wisconsin-Madison,1991.
  • 6HARLANDER J,ROESLER F.Spatial heterodyne spectroscopy:a novel interferometric technique for ground-based and space astronomy[J].SPIE,1990,1235:622-633.
  • 7WATCHORN S,ROESLE F L,HARLANDER J,et al.Development of the spatial heterodyne spectrometer for VUV remote sensing of the interstellar medium[J].SPIE,2001,4498:284-295.
  • 8MIERKIEWICZ E J,ROESLER F L,HARLANDER J,et al.First light performance of a near-UV spatial heterodyne spectrometer for interstellar emission line studies[J].SPIE,2004,5492:751-766.
  • 9ROESLER F L,HARLANDER J.Spatial heterodyne spectroscopy for atmospheric remote sensing[J].SPIE,1999,3756:337-345.
  • 10HARLANDER J,ROESLER F L,CARDON J G,et al.SHIMMER:a spatial heterodyne spectrometer for remote sensing of Earth's middle atmosphere[J].Appl.Opt.,2002,41(7):1343-1352.

共引文献87

同被引文献58

  • 1祁建霞,董军.光声谱学及其应用[J].固原师专学报,2005,26(6):11-14. 被引量:1
  • 2王建业,纪新明,吴飞蝶,周嘉,黄宜平.光声光谱法探测微量气体[J].传感技术学报,2006,19(4):1206-1211. 被引量:26
  • 3Fink T, Buscher S, Gabler R, et al. An Improved C02 LaserIntracavity Photoacoustic Spectrometer for Trace Gas Analysis [ J].Review of Scientific Instruments, 1996,67 (11) :4000-4004.
  • 4Song K, Cha H K, Kapitanov V A, et al. Differential HelmholtzResonant Photoacoustic Cell for Spectroscopy and Gas Analysiswith Room-Temperature Diode Lasers [ J]. Applied Physics B :Lasers and Optics,2002,75 :215-227.
  • 5Van Neste C W5Senesac L R,Thundat T. Standoff PhotoacousticSpectroscopy[ J]. Applied Physics Letters, 2008,92 ( 23 ) :234102-1-3.
  • 6Kosterev A A, Bakhirkin Y A,Curl R F,et al. Quartz-EnhancedPhotoacoustic Spectroscopy [ J]. Optics Letters,2002,27 (21 ):1902-1904.
  • 7Schilt S, Kosterev A A, Tittel F K. Performance Evaluation of aNear Infrared QEPAS Based Ethylene Sensor[ J]. Applied PhysicsB:Lasers and Optics,2009,95(4) :813-824.
  • 8Kosterev A A, Dong L, Thomazy D, et al. QEPAS for ChemicalAnalysis of Multi-Component Gas Mixtures [ J]. Applied PhysicsB : Lasers and Optics,2010,101 (3 ) :649-659.
  • 9Lewicki R,Wysocki G,Kosterev A A, et al. Carbon Dioxide andAmmonia Detection Using 2 jxm Diode Laser Based Quartz-Enhanced Photoacoustic Spectroscopy [ J]. Applied Physics B ;Lasers and Optics,2007,87(1) : 157-162.
  • 10Lei D, Vincenzo S, Rafal L, et al. Ppb-Level Detection of NitricOxide Using an External Cavity Quantum Cascade Laser BasedQEPAS Sensor[J]. Optics Express,2011,19(24) :24037-24045.

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部