期刊文献+

基于道路工况预测混合动力公交车SOC开环控制策略

Control Strategy of SOC Open-Loop of Hybrid Electric Bus Based on Driving Cycle Prediction
下载PDF
导出
摘要 混合动力车辆一般采用基于荷电状态(SOC)闭环的控制策略,对蓄电池组进行频繁充电,使SOC维持在较高水平,影响制动能量的回收,从而导致燃油经济性不理想.为此,利用BP神经网络并结合城市公交运行特点,提出SOC开环控制策略,对公交车未来站点间的运行工况进行预测,减少蓄电池组的充电次数,降低蓄电池组的荷电状态.试验表明,采用该控制策略可以显著降低电池组充电时间和次数,有利于制动能量的回收,百公里油耗降低了3%. The conventional strategy of hybrid electric vehicle was based on the state of charge (SOC)closed-loop which charged the battery frequently to sustain a high-level SOC and decreased the fuel efficiency because the energy from the regenerative braking couldn't be stored any more. SOC open-loop control strategy was proposed using the BP neural network and considering the trait of city bus to predict the next driving cycles between two stops in short future. Experiment result shows that the control strategy is useful to decrease charging times and time-period, which improve fuel efficiency by 3% higher than the vehicle on the route with the control strategy of SOC closed-loop because of en- hanced regenerative braking energy.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2012年第5期386-392,共7页 Journal of Tianjin University(Science and Technology)
基金 国家高技术研究发展计划(863计划)基金资助项目(2006AA11A112)
关键词 道路工况 预测 混合动力公交车 荷电状态开环 控制策略 driving cycle prediction hybrid electric bus state of charge open-loop control strategy
  • 相关文献

参考文献12

  • 1Yoshitaka Deguchi, Kouichi Kuroda, Makoto Shouji, et al. HEV charge/discharge control system based on navigation information[C] // SAE International Con- gress. Detroit, USA, 2004-21-0028.
  • 2Anderson C, Pettit E. The effects of APU characteristics on the design of hybrid control strategies for hybrid elec- tric vehicles [C]//SAE International Congress. Detroit, USA, 1995: 950493.
  • 3Johnson V H, Wipke K B, Rausen D J. HEV control strategy for real-time optimization of fuel economy and emissions[C]// Future Car Congress. Crystal, USA, 2000-01-1543.
  • 4Nashal J, Naim A. Kheir M S, et al. A rule based en- ergy management strategy for a series hybrid vehi- cle[C]//Proceedings of American Control Conference. Albuquerque, USA, 1997: 689-693.
  • 5Ichikawa S, Yokoi management system car navigation over Vehicles Symposium Y, Doki S, et al. Novel energy for hybrid electric vehicles utilizing a commuting route [C]//Intelligent Parma, Italy, 2004: 161-166.
  • 6Montazeri-Gh M, Ahmadi A, Asadi M. Driving condi- tion recognition for genetic-fuzzy HEV control [C]//3 rd International Workshop on Genetic and Evolving Fuzzy Systems. Witten-Bommerholz, Germany, 2008: 65-70.
  • 7王晓敏,刘希玉,戴芬.BP神经网络预测算法的改进及应用[J].计算机技术与发展,2009,19(11):64-67. 被引量:17
  • 8王建平,郭尚.BP神经网络预测算法性能的改进策略[J].微电子学与计算机,2007,24(10):144-145. 被引量:5
  • 9杜华英,赵跃龙.人工神经网络典型模型的比较研究[J].计算机技术与发展,2006,16(5):97-99. 被引量:23
  • 10Zhuang Jihui, Xie Hui, Yan Ying. Research and devel- opment of electric vehicle data collection and calibration platform based on GPRS and 1NTERNET[C]//Vehicle Power and Propulsion Conference. Harbin, China, 2008: 380-381.

二级参考文献24

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部