期刊文献+

内窥式近红外频域漫射层析成像图像重构算法 被引量:4

Image Reconstruction Method for Endoscopic Near-Infrared Frequency-Domain Diffuse Optical Tomography
下载PDF
导出
摘要 应用内窥式近红外频域漫射层析成像技术可望对早期宫颈癌进行诊断.研究了同时利用频域测量值中幅值和相位信息的光学参数图像重构算法.为解决计算时间长的问题,雅可比矩阵采用伴随源法和修正的广义脉冲谱技术构建,迭代更新因子采用广义最小余量Krylov方法求解.为验证所发展的算法,对吸收系数和约化散射系数分别进行了重构.在无限和有限2种吸收对比度情况下,验证目标深度对目标定位精度的影响.重构结果表明,所发展的算法具有较好的重构精度,吸收系数和约化散射系数的保真度可达80%;并且结果未表现出定位精度受目标深度影响.所发展的算法可用于内窥式近红外频域漫射层析成像. The endoscopic near-infrared frequency-domain diffuse optical tomography is hopefully to be applied to the diagnosis of early cervical cancer. A reconstruction method using both the measured amplitude and phase informa- tion on frequency domain was developed. To reduce the computing time, the Jacobian matrix was built by combining the adjoint method with the modified Generalized Pulse Spectrum Technique. The Generalized Minimal Residual Kry- lov method was used for obtaining the iterative update factor. The absorption coefficient (μa ) and the reduced scatter- ing coefficient (μs ) were reconstructed respectively for evaluating the developed algorithm. The influence of the depth of target on the accuracy of target location was verified on both infinite and finite μa contrast levels with respect to the background μa value. The results show that μa and μs can be reconstructed with high accuracy and the fidelity can reach up to 80%. Furthermore, the reconstruction results show that the determination of target location has not been affected by the target depth. The developed algorithm is feasible in endoscopic near-infrared frequency-domain diffuse optical tomography.
出处 《天津大学学报》 EI CAS CSCD 北大核心 2012年第5期423-429,共7页 Journal of Tianjin University(Science and Technology)
基金 国家高技术研究发展计划(863计划)资助项目(2009AA02Z413) 国家自然科学基金资助项目(30970775) 天津市自然科学基金资助项目(09JCZDJC18200 10JCZDJC17300)
关键词 频域漫射层析成像 宫颈癌 近红外 内窥式 frequency-domain diffuse optical tomography cervical cancer near-infrared endoscopic
  • 相关文献

参考文献12

  • 1Schweiger M, Arridge S R, Nissila I. Gauss-Newton method for image reconstruction in diffuse optical tomo- graphy[J]. Physics in Medicine and Biology, 2005, 50(10) : 2365-2386.
  • 2Arridge S R. Optical tomography in medical imaging [J]. Inverse Problems, 1999, 15: R41-R93.
  • 3Brooksby B, Jiang S, Dehghani H, et al. Combining near-infrared tomography and magnetic resonance imag- ing to study in vivo breast tissue: Implementation of a Laplacian-type regularization to incorporate magnetic resonance structure [J]. Journal of Biomedical Optics,2005, 10(5): 1-10.
  • 4Xu H, Dehghani H, Pogue B W, et al. Near-infrared imaging in the small animal brain: Optimization of fiber positions[J]. Journal of Biomedical Optics, 2003, 8(1): 102-110.
  • 5Mirabal Y N, Chang S K, Atkinson E N, et al. Reflec- tance spectroscopy for in vivo detection of cervical pre- cancer[J]. Journal of Biomedical Optics, 2002, 7(4) : 587-594.
  • 6Kendrick J E, Huh W K, Alvarez R D, LUMATM cervical imaging system [J]. Expert Review of Medical Devices, 2007, 4(2): 121-129.
  • 7Piao Daqing, Xie Hao, Musgrove C, et al. Near- infrared optical tomography: Endoscopic imaging ap- proach [J]. Proceedings of SPIE, 2007, 6431: 1-10.
  • 8Musgrove C, Bunting C F, Dehghani H, et al. Com- putational aspects of endoscopic (Trans-rectal) near- infrared optical tomography: Initial investigations[J]. Proceedings ofSPIE, 2007, 6434: 1-10.
  • 9Schweiger M, Arridge S R, Hiraoka M, et al. The finite element method for the propagation of light in scat- tering media: Boundary and source conditions[J]. MedicalPhysics, 1995, 22(11) ~ 1779-1792.
  • 10Gao Feng, Zhao Huijuan, Tanikawa Y, et al. Time- resolved diffuse optical tomography using a modified generalized pulse spectrum technique [J]. leice Transac- tions on Information and Systems, 2002, E85-D (1): 133-142.

同被引文献22

  • 1赵军,丁海曙,腾轶超.频域近红外光谱方法定量测量组织氧饱和度[J].光子学报,2005,34(3):386-389. 被引量:17
  • 2赵会娟,姜颖婷,缪辉,高峰,YUKARI Tanikawa,YUKIO Yamada.近红外漫射光层析成像实验研究[J].光子学报,2007,36(6):1142-1146. 被引量:6
  • 3Hebden J C, Gibson A, Yusof R M, et al. Three- dimensional optical tomography of the premature infant brain [J]. Physics in Medicine and Biology, 2002, 47 : 4155-4166.
  • 4Koizumi H, Yamamoto T, Maki A, et al. Optical to- pography: Practical problems and new applications [J] . Applied Optics , 2003, 42(16) : 3054-3062.
  • 5Huppert T J, Diamond S F, Franceschini M A, et al. HomER: A review of time-series analysis methods for near-infrared spectroscopy of the brain [J]. Applied Op- tics, 2009, 48(10): 280-298.
  • 6Hoshi Y, Huang J, Kohri S, et al. Recognition of hu- man emotions from cerebral blood flow changes in the frontal region: A study with event related near-infrared spectroscopyEJ]. Journal of Neuroimaging, 2011 , 21(2) : 94-101.
  • 7Yamada T, Umeyama S, Matsuda K, et al. Multidis- tance probe arrangement to eliminate artifacts in func- tional near-infrared spectroscopy[J]. Journal of Bio- medical Optics, 2009, 14(6) : 064034.
  • 8Nasi T, Mki H, Hiltunen P, et al. Effect of task- related extracerebral circulation on diffuse optical tomo- graphy: Experimental data and simulations on the fore- headEJ]. Biomedical Optics Express, 2013, 4(3): 412-426.
  • 9Virtanen J, Noponen T, Meriliinen P, et al. Compari- son of principal and independent component analysis in removing extracerebral interference from near-infrared spectroscopy signals EJ]. Journal of Biomedical Optics, 2009, 14(5) : 054032.
  • 10Franceschini M A, Joseph D K, Huppert T J, et al. Diffuse optical imaging of the whole head [J]. Journal of Biomedical Optics, 2006, 11 (5): 054007.

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部