期刊文献+

癸烷硫醇修饰的金/银SERS衬底用于PCB-77检测的研究 被引量:1

Decanethiol-modified Au/Ag SERS substrates for detection of polychlorinated biphenyl-77
下载PDF
导出
摘要 通过模板法制备了强表面增强拉曼散射(SERS)活性的"球加片"Au/Ag纳米结构阵列,并利用这种纳米衬底对PCB-77分子的SERS光谱进行了研究。结果表明,尽管该纳米结构能够检测到PCB-77分子的SERS特征峰,但信噪比低。利用癸烷硫醇中的巯基与贵金属之间相互作用,实现了癸烷硫醇分子对纳米结构表面的功能化修饰,研究发现此时PCB-77分子的SERS光谱质量得到了明显改善。并且,这种"球加片"衬底的癸烷硫醇分子最优修饰时间为36 h,利用经36 h修饰后的纳米衬底,极大地提高了PCB-77的SERS光谱特征峰的强度。 A " sphere plus plate " -composed Au/Ag nanostructure arrays with strong surface-enhanced Raman scattering (SERS) activity are fabricated through the templated method, and the SERS spectrum of polychlorinated biphenyl-77(PCB-77) based on this nanostructure is investigated. The results indicate that the characteristic Raman-shift peaks of PCB-77 may be observed with the bare SERS substrate, but the signal-to-noise ratio of SERS spectrum is too low. By functionalization-modifying decanethiol (DT) on the surface of the bare SERS substrate with the help of the interaction between the SH group of DT and novel metals, the SERS spectrum of PCB-77 is obviously improved. With the optimal functionalization-modified SERS substrate which is soaked in the DT solution for 36 h, the characteristic Raman-shift peaks' intensity of the SERS spectrum of PCB-77 gets enhanced greatly.
出处 《量子电子学报》 CAS CSCD 北大核心 2012年第3期357-361,共5页 Chinese Journal of Quantum Electronics
基金 国家重点基础研究发展计划(973计划)(2007CB936603) 国家高技术研究发展计划(863计划)(2011AA030203)资助
关键词 光谱学 纳米阵列 表面增强拉曼散射 功能化修饰 多氯联苯-77 spectroscopy nano-structured arrays surface-enhanced Ramam scattering functionalizationmodified polychlorinated biphenyl-77
  • 相关文献

参考文献3

二级参考文献30

  • 1Yu Xinglong Wei Xing Deng Yan Liu Fangfang.Advances in Phase Detection Technique of Surface Plasmon Resonance Biosensor[J].稀有金属材料与工程,2006,35(A03):299-304. 被引量:1
  • 2黄国栋,韩海燕,贾先德,金顺平,李建权,王鸿梅,唐晓闩,江海河,储焰南,周士康.酮类有机物放电离子淌度谱研究[J].光谱学与光谱分析,2007,27(5):833-836. 被引量:2
  • 3HAN Hai-yan HUANG Guo-dong JIN Shun-ping ZHENG Pei-chao XU Guo-hua LI Jian-quan WANG Hong-mei CHU Yan-nan.Determination of alcohol compounds using corona discharge ion mobility spectrometry[J].Journal of Environmental Sciences,2007,19(6):751-755. 被引量:4
  • 4Li F, Xie Z, Schmidt H, et al. Ion mobility spectrometer for online monitoring of trace compounds [J]. Spec- trochimica Acta Part B: Atomic Spectroscopy, 2002, 57(10): 1563-1574.
  • 5Stach J, Baumbach J I. Ion mobility spectrometry-basic elements and applications [J]. International Journal of Ion Mobility Spectrometry, 2002, 5(1): 1-21.
  • 6Pozzi R, Pinelli F, Bocchini P, et al. Rapid determination of methyl tert-butyl ether using dynamic headspace/ion mobility spectrometry [J]. Analytica Chimica Acta, 2004, 504(2): 313-317.
  • 7Asbury G R, et al. Using different drift cases to change separation factors (a) in ion mobility spectrometry [J] Analytical Chemistry, 2000, 72(3): 580-584.
  • 8Sielemann S, Baumbach J I, Pilzecker P, et al. Detection of trans-1, 2-dichloroethene, trichloroethene and tetra- chloroethene using multi-capillary columns coupled to ion mobility spectrometers with UV-ionisation sources [J] International Journal of Ion Mobility Spectrometry, 1999, 2(1): 15-21.
  • 9Dugourd Ph, Hudgins R R, Clemmer D E, et al. High-resoluti0n ion mobility measurements [J]. Review of Scientific Instruments, 1997, 68(2): 1122-1129.
  • 10Wu Ch, Hill H H Jr, Rasulev U Kh, et al. Surface ionization ion mobility spectrometry [J]. Analytical Chemistry, 1998, 71(1): 273-278.

共引文献93

同被引文献13

  • 1Casiraghi C, Pisana S, Novoselov K S, et al. Raman fingerprint of charged impurities in graphene [J]. Appl. Phys. Lett., 2007, 91(3): 233108-233110.
  • 2Klimov E, Li W, Yang X, et al. Chemical reaction imaging within microfluidic devices using confocal Raman spectroscopy: The case of water and deuterium oxide as a model system [J]. Anal. Chem., 2008, 80(5): 1689-1695.
  • 3Fiedler A, Baranska M, Schulz H. FT-Raman spectroscopy-a rapid and reliable quantification protocol for the determination of natural indigo dye in polygonum tinctorium [J]. J. Raman Spectrosc., 2010, 42(2): 551-557.
  • 4Samuel L K, Emilie R, Nicholas V, et al. Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment [J]. J. Am. Chem. Soc., 2011, 133(11): 4115-4122.
  • 5Winterhalder M J, Zumbusch Lippitz A M, Orrit M. Toward far-field vibrational spectroscopy of single molecules at room temperature [J]. J. Phys. Chem. B, 2011, 115(18): 5425-5430.
  • 6John R L, Ronald L B. Single molecule SERS spectral blinking and vibronic coupling [J]. J. Phys. Chem. C, 2011, 115(11): 4540-4545.
  • 7Paul I O, Michael D M. Polymer-capped fiber-optic Raman probe for non-invasive Raman spectroscopy [J]. Analy., 2012, 137(1): 77-81.
  • 8Pentti N, Janne S. Rugged fiber-optic Raman probe for process monitoring applications [J]. Appl. Spectrosc., 2001, 55(2): 1337-1340.
  • 9Nick G, Susan C, Steele D, et al. Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data [J]. Sens., 2012, 12(5): 5471-5485.
  • 10Dejesu M A S, Giesfeldt K S, Sepaniak M J. Use of a sample translation technique to minimize adverse effects of laser irradiation in surface-enhanced Raman spectrometry [J]. Appl. Spectrosc., 2003, 57(9): 428-438.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部