期刊文献+

本原不可幂带号有向图的lewin数的界 被引量:1

Bounds on the Lewin Number for Primitive Non-powerful Signed Digraphs
原文传递
导出
摘要 如果存在正整数k使得对于D中任意两点u和v(允许u=v),在D中都有从u到v的长为k的有向途径,则称有向图D是本原的.给有向图的每条弧赋以符号+1或者一l得到的图s称为带号有向图.如果带号有向图s中包含sSSD途径对,即包含两条有相同的起点,相同的终点,相同的长度,并且有不同的符号的途径对,则称s是不可幂的.在本文中,我们将Lewin M提出的lewin数的概念从本原有向图推广到本原不可幂带号有向图,给出了本原不可幂带号有向图s的lewin数l(s)的若干上界,并提出了一个公开问题. A digraph D is primitive if for some positive integer k there is a walk of length exactly k from each vertex u to each vertex v (possible u again). A signed digraph S is a digraph where each arc of S is assigned a sign 1 or -1. A signed digraph S is non-powerful if S contains a pair of SSSD walks which they have the same initial vertex, same terminal vertex and same length, but different signs. In this paper, we study lewin number l(S) for a primitive non-powerful signed digraph S, which is a generalization of lewin number for a primitive digraph introduced by Lewin M, some upper bounds on l(S) are given, and an open problem is presented.
出处 《应用数学学报》 CSCD 北大核心 2012年第3期396-407,共12页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10901061,11071088) 广东高校优秀青年创新人才培养计划(LYM10039) 广州珠江科技新星(2011J2200090)资助项目
关键词 本原 带号有向图 不可幂 lewin数 pimitive signed digraph non-powerful lewin number
  • 相关文献

参考文献11

  • 1Lewin M. On Exponent of Primitive Matrices. Numer. Math., 1971, 18:154-161.
  • 2Shen J. On a Problem of Lewin. Linear Algebra Appl., 1998, 274:411-426.
  • 3You L H, Shao J Y, Shan H Y. Bounds on the Basis of Irreducible Generalized Sign Pattern Matrices. Linear Algebra Appl., 2007, 427:285-300.
  • 4Wang L Q, Miao Z. K, Yan C. Local Bases of Primitive Non-powerful Signed Digraphs. Discrete Math., 2009, 309(4): 748-754.
  • 5Li Q, Liu B L, Stuart J. Bounds on the k-th Generalized Base of a Primitive Sign Pattern Matrix. Linear and Multilinear Algebra, 2010, 58:355-366.
  • 6Li Q, Liu B L. Bounds on the k-th Multi-g Base Index of Nearly Reducible Sign Pattern Matrices. Discrete Math., 2008, 308(21): 4846-4860.
  • 7Ma H P. Bounds on the Local Bases of Primitive, Non-powerful, Minimally Strong Signed Digraphs. Linear Algebra Appl., 2009, 430:718-731.
  • 8Gao Y B, Shao Y L, Shen J. Bounds on Local Bases of Primitive Non-powerful Nearly Reducible Sign Patterns. Linear Multilinear Algebra, 2009, 57:205-215.
  • 9Brualdi R A, Ryser H J. Combinatorial Matrix Theory. Cambridge University Press, 1991.
  • 10Li Z, Hall F, Eschenbach C. On the Period and Base of a Sign Pattern Matrix. Linear Algebra Appl., 1994, 212/213:101-120.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部