期刊文献+

图模型匹配:一种新的凹松弛函数及算法 被引量:4

Graph Matching:a New Concave Relaxation Function and Algorithm
下载PDF
导出
摘要 将问题中的置换矩阵放松为双随机矩阵是近年来近似图匹配算法的一个重要发展方向.它的本质在于将离散的图匹配问题转换成一个连续优化问题,而一般来讲,相对于离散优化,连续优化问题的近似求解将更为容易.但随之带来的一个问题是如何有效地将连续优化得到的双随机矩阵重新映射回一个置换矩阵.最近文献中提出了一种针对于无向无自环图的凹松弛(Concave relaxation)函数,使得算法中的双随机矩阵可以平滑地收敛到一个置换矩阵,并得到优异的匹配精度.但除了无向且无自环图,文献中还没有针对其他类型图模型的凹松弛函数.本文提出一种针对于有向无自环图匹配问题的凹松弛函数,并在此基础上给出一种图匹配算法.大量对比实验验证了本文提出模型及算法的有效性. Recently,approximate graph matching based on relaxing the permutation matrix to a doubly stochastic matrix has become an important and popular topic.The key point lies in which approximation over a continuous set is usually easier to implement than that over a discrete one.However,a consequent trouble related to such a relaxation is how to properly map the doubly stochastic matrix back to a permutation one.In the literature,a concave relaxation function for matching problem between the undirected graphs without self-loops was recently proposed,such that the doubly stochastic matrix can converge to a permutation one in a smooth way,and got a state-of-art performance on matching accuracy.Unfortunately,except for the undirected graphs without self-loops,there are no concave relaxation proposed for any other types of graph models.In this paper,we propose a concave relaxation for the directed graphs without self-loops,based on which a graph matching algorithm is then presented.Extensive experimental comparisons witness the validity of the proposed methods.
作者 刘智勇
出处 《自动化学报》 EI CSCD 北大核心 2012年第5期725-731,共7页 Acta Automatica Sinica
基金 国家自然科学基金(60975002)资助~~
关键词 图模型匹配 Frank-Wolfe算法 凹松弛函数 凸松弛函数 Graph matching Frank-Wolfe algorithm concave relaxation convex relaxation
  • 相关文献

参考文献17

  • 1Eshera M A, Fu K S. An image understanding system us- ing attributed symbolic representation and inexact graph- matching. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 1986, 8(5): 604-618.
  • 2Duchenne O, Bach F, Kweon I S, Ponce J. A tensor-based al- gorithm for high-order graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2383-2395.
  • 3Singh R, Xu J B, Berger B. Global alignment of multiple protein interaction networks with application to functional orthology detection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35): 12763-12768.
  • 4Sambhoos K, Nagi R, Sudit M, Stotz A. Enhancements to high level data fusion using graph matching and state space search. Information Fusion, 2010, 11(4): 351-364.
  • 5Wu H, Ling T W, Dobbie G, Bao Z, Xu L. Reducing graph matching to tree matching for XML queries with ID refer- ences. Lecture Notes in Computer Science. Berlin: Springer, 2010. 391-406.
  • 6Fernandez M L, Valiente G. A graph distance metric com- bining maximum common subgraph and minimum common supergraph. Pattern Recognition Letters, 2001, 22(6-7): 753-758.
  • 7Umeyama S. An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 695-703.
  • 8Luo B, Hancock R. Structural graph matching using the EM algorithm and singular value decomposition. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2001, 23(10): 1120-1136.
  • 9郑开杰,高玉涛,彭济根.赋权图匹配问题的一种新的松弛模型[J].自动化学报,2010,36(8):1200-1203. 被引量:1
  • 10Gold S, Rangarajan A. A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 377-388.

二级参考文献13

  • 1Gold S, Rangarian A. A graduated assignment algorithm for graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 377-388.
  • 2Zavlanos M M, Pappas G J. A dynamical systems approach to weighted graph matching. In: Proceedings of the 45th IEEE Conference on Decision and Control. San Diego, USA: IEEE, 2006. 3492-3497.
  • 3Rangarajan A, Chui H, Mjolsness E. A relationship between spline-based deformable models and weighted graphs in nonrigid matching. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Hawaii, USA: IEEE, 2001. 897-910.
  • 4Loiola E M, de Abreu N M, Boaventura-Netto P O, Hahn P, Querido T. A survey for the quadratic assignment problem. European Journal of Operational Research, 2007, 176(2): 657-690.
  • 5Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph matching in pattern recognition. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(3): 265-298.
  • 6Moe R. GRIBB: branch-and-bound methods on the internet. In: Proceedings of the 5th International Conference on Parallel Processing and Applied Mathematics. Czestochowa, Poland: Springer, 2003. 1020-1027.
  • 7Umeyama S. An eigendecomposition approach to weighted graph matching problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10(5): 695-703.
  • 8Zhao G, Luo B, Tang J, Ma J. Using eigen-decomposition method for weighted graph matching. In: Proceedings of the 3rd International Conference on Intelligent Computing. Qingdao, China: Springer, 2007. 1283-1294.
  • 9Almohamad H A, Duffuaa S O. A linear programming approach for the weighted graph matching problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(5): 522-525.
  • 10Papadimitriou C H, Stciglitr K. Combinarorial Optimization Algorithms and Complexity. New Jersey: Prentice-Hall, 1982.

同被引文献30

  • 1岳思聪,王庆,赵荣椿.Robust Wide Baseline Point Matching Based on Scale Invariant Feature Descriptor[J].Chinese Journal of Aeronautics,2009,22(1):70-74. 被引量:6
  • 2Lowe D. Distinctive Image Features from Scale-invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 3Zhang Hao, Berg A C, Maire M, et al. SVM-KNN: Discri- minative Nearest Neighbor Classification for Visual Category Recognition[C]//Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE Press, 2006: 2126-2136.
  • 4Fischler M, Bolles C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Communications of ACM, 1981, 24(6): 381-395.
  • 5Gold S, Rangarajan A. A Graduated Assignment Algorithm for Graph Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(4): 377-388.
  • 6Maciel J, Costeira J. A Global Solution to Sparse Corres- pondence Problems[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(2): 187-199.
  • 7Cour T, Srinivasan P, Shi J. Balanced Graph Matching[M]. Cambridge, USA: MIT Press, 2007: 313-320.
  • 8Ren Zhenhua, Zhao Jieyu. Graph Matching Based a Probabi- listic Spectral Method[C]//Proc. of the 7th International Conference on Natural Computation. New Jersey, USA: IEEE Computer Society, 2011: 1512-1517.
  • 9Duchenne O, Bach F, Kweon I, et al. A Tensor-based Algorithm for High-order Graph Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12): 2383-2395.
  • 10Caetano T S, McAuley J, Li Cheng, et al. Learning Graph Matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(6): 1048-1058.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部