期刊文献+

基于价格持续时间的中国股市日内风险价值预测 被引量:4

Forecasting Intraday Value-at-Risk Based on Price Duration in China Stock Market
原文传递
导出
摘要 基于高频数据度量日内交易活动的风险是目前日内金融数据与风险管理中极具挑战性的研究课题之一。本文从实时交易的角度,使用中国股市分笔交易数据,基于价格持续时间的自回归条件持续时间(ACD)模型,研究日内不规则交易数据的风险测度,利用日内不等间隔波动模型估计了日内交易的即时条件波动率,对日内不等间隔风险价值进行了预测和检验。实证结果发现日内不等间隔风险价值模型能够比较好的刻画日内交易风险,股票投资者和市场监管者可以基于该工具对日内风险做出合理的预测,达到止损避险和控制风险的目的。 It is one of the challenging topics to measure the risk of intraday trading activity based on high frequency data in risk management. From the perspective of real-time transactions, this paper uses the tick-by-tick data in China stock market to study the risk measurement for the irregular trading data based on the ACD model of price duration. The instantaneous conditional volatility is estimated by using intraday irregular volatility model, which is applied to forecast the irregularly spaced intraday Value-at-Risk and carry out the back testing. The empirical results show that the irregularly spaced intraday Value-at-Risk model is good for forecasting the maximum losses in the different probability of loss.
出处 《数理统计与管理》 CSSCI 北大核心 2012年第3期527-536,共10页 Journal of Applied Statistics and Management
基金 教育部人文社会科学研究项目(09YJC910009) 西南财经大学"211工程"三期青年教师成长项目(211QN09020) 西南财经大学"211工程三期"统计学重点学科建设项目资助
关键词 价格持续时间 风险价值 超高频数据 ACD模型 price duration, VaR, ultra-high-frequency data, ACD model
  • 相关文献

参考文献9

  • 1Engle R F, and Russell J R. Autoregressive conditional duration: A new model for irregularly spaced transaction data [J]. Econometrica, 1998, 66(5): 1127-1162.
  • 2Ghysels E, and Jasiak J. GARCH for irregularly spaced financial data: The ACD-GARCH model [J]. Studies in Nonlinear Dynamics and Economics, 1998, 2(4): 133 149.
  • 3Giot P. Market risk models for intraday data [J]. European Journal of Finance, 2005, 11(4): 309 324.
  • 4Dionne G, Duchesne P, and Paurar M. Intraday value at risk (IVaR) using tick-by-tick data with application to the toronto stock exchange [J]. Journal of Empirical Finance, 2009, 16(5): 777-792.
  • 5Colletaz G, Hurlin C, and Tokpavi S. Irregularly spaced intraday value at risk (ISIVaR) models: Forecasting and predictive abilities [R]. Working Paper, 2007.
  • 6尹优平,马丹.基于分布拟合方法的高频数据风险价值研究[J].金融研究,2005(3):59-67. 被引量:8
  • 7邵锡栋,连玉君,黄性芳.交易间隔、超高频波动率与VaR——利用日内信息预测金融市场风险[J].统计研究,2009,26(1):96-102. 被引量:21
  • 8Engle R F. The econometrics of ultra-high frequency data [J]. Econometrica, 2000, 68(1): 1-22.
  • 9Kupiec P. Techniques for verifying the accuracy of risk measurement models [J]. Journal of Deriva- tives, 1995, 3(2): 73-84.

二级参考文献22

  • 1徐国祥,金登贵.基于金融高频数据的ACD模型非参数设定检验[J].统计研究,2007,24(4):15-18. 被引量:9
  • 2马丹,尹优平.交易间隔、波动性和微观市场结构——对中国证券市场交易间隔信息传导的实证分析[J].金融研究,2007(07A):165-174. 被引量:15
  • 3Andersen, T. and Bollerslev, T., 1998, Answering the skeptics: Yes, standard volatility models do provide accurate forecasts[J]. International Economic Review, 39: 885- 905.
  • 4Diamond, D. and Verrecchia, R., 1987, Constraints on short-selling and asset price adjustment to private information [ J ]. Journal of Financial Economics, 18:277 - 311.
  • 5Easley, D. and O'Hara, M., 1992, Time and the process of security price adjustment[J]. Journal of Finance, 47:77 - 605.
  • 6Engle, R., 2000, The econometrics of ultra-high frequency data [ J ]. Econometrica, 68: 1 - 22.
  • 7Engle, R. and Manganelli, S., 2004, CAViaR: Conditional autoregressive Value at Risk by regression quantiles [ J ]. Journal of Business and Economics Statistics, 22: 367- 381.
  • 8Engle, R. and Russell, J., 1998, Autoregressive conditional duration: a new model for irregularly spaced transaction data[ J]. Econometrica, 66:1127 - 1162.
  • 9Duffie, D. and Pan, J., 1997, An overview of value at risk[J]. Journal of Derivatives, 4:7 - 49.
  • 10Granger, C., 1980, Long memory relationships and the aggregation of dynamic models [ J]. Journal of Econometrics, 14 : 227 - 238.

同被引文献27

  • 1柏满迎,孙禄杰.三种Copula-VaR计算方法与传统VaR方法的比较[J].数量经济技术经济研究,2007,24(2):154-160. 被引量:41
  • 2Cummins J D, Phillips R D. Capital Adequacy and Insurance Risk-Based Capital Systems [J]. Journal of Insurance Regulation,2009,28(1).
  • 3Eling M, HolzmOller I. An overview and comparison of risk- based capital standards[J]. Journal of Insurance Regulation, 2008, 26(4) :31-60.
  • 4Holzmtiller I. The United States RBC standards, solvency II and the Swiss solvency test: a comparative assessment [J]. The Geneva Papers on Risk and Insurance-Issues and Practice, 2009, 34(1) :56-77.
  • 5Brockett, P. L., Golden, L. L., Jang, J., Yang, C.. A comparison of neural network, statistical methods, and variable choice for life insurers" financial distress prediction [J]. Journal of Risk and Insurance, 2006,73 ( 3 ) : 397-419.
  • 6Huang N. E. , Shen Z. , Long S. R. , 1998, The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis [J], Proceedings of the Royal Society, 454 (12), 903-995.
  • 7Boudraa A. O., Cexus J. C., 2007, EMD-Based Signal Filtering [J], IEEE Transactions on In- strumentation and Measurement, 56 (6), 2196-2202.
  • 8Nelson R. 13. , 2006, An Introduction to Copula [M], Published by Springer Press.
  • 9Bouye E. , Durrleman V. , Ronealli T. , 2000, Copulas for Finance A Reading Guide and Some Applications [R], Groupe de Recherche Operationnelle, Working Paper.
  • 10Genest C. , Rivest L. , 1993, Statistical Inference Procedures for Bivariate Archimedean Copulas [J], Journal of the American Statistical Association, 88 (424), 1034-1043.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部