期刊文献+

基于一维搜索的ICA自适应算法及其在股票分析中的应用 被引量:3

ICA Adaptive Algorithm Based on Line Search and its Application in the Stock Data Analysis
原文传递
导出
摘要 在固定步长的ICA极大似然估计自适应算法的基础上,通过一维搜索引入了步长修正方案,使新算法可在收敛速度和稳定状态时的失调误差这两个性能指标上达到最佳结合点,具有较好的时变系统跟踪能力。仿真结果证实了本文所提出的算法可以有效地提高ICA的自适应性,能够更准确地完成盲源分离。在此基础上将算法用在时变性很强的股票数据上,以验证该算法的有效性和可行性。 This paper introduces step-size modified strategy on the base of fixed step size algorithm of ICA by maximum likelihood estimation through line search. Then the new algorithm attains the best integrated point in the two performance indices between the convergence speed and the mismatch error at the steady state. And it has the preferable ability to track a changing mixing environment. The simulation results demonstrate that this algorithm improves the adaptability of ICA effectively and performs blind signal separation accurately. Then the new algorithm is used to analyze the time-variable stock data to validate effectiveness and feasibility of the proposed algorithm.
出处 《数理统计与管理》 CSSCI 北大核心 2012年第3期564-570,共7页 Journal of Applied Statistics and Management
基金 国家自然科学基金资助项目(10571018 70871015)
关键词 独立成分分析 一维搜索 黄金分割法 极大似然估计 股票收益 independent component analysis, line search, golden section method, maximum likelihoodestimation, returns of stocks
  • 相关文献

参考文献10

  • 1Cichocki A, Amari S. Adaptive blind signal and image processing: learning algorithms and applica- tions[M]. New York: Wiley, 2002. 335-343.
  • 2高颖,李月,杨宝俊.变步长自适应盲源分离算法综述[J].计算机工程与应用,2007,43(19):75-79. 被引量:10
  • 3Back A D, Weigend A S. A first application of independent component analysis to extracting structure from stock returns[J]. International Journal on Neural Systems, 1998, 8: 473-484.
  • 4Kiviluoto K, Oja E. Independent component analysis for parallel financial time series[A]. In: Kearns M, Solla S, Cohn D(Eds.), Proceedings of the Fifth International Conference on Neural Information Processing[C]. MIT Press, 1998, 2: 895-898.
  • 5Malaroiu S, Kiviluoto K, Oja E. Time series prediction with independent component analysis[A]. In: Tonkes E, Tan C, Sugden S, Knmar K(Eds.), Proceedings of the International Conference on Advanced Investment Technology[C]. Gold Coast, Australia, 2000.
  • 6Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis[M]. John Wiley, New York, 2001. 203-219.
  • 7Amari S, Cichocki A, Yang H H. A new learning algorithms for blind signal separation[A]. In: Touret- zky D S, Mozer M C, Hasselmo M E(Eds.), Advances in Neural Information Processing Systems[C]. Cambridge, MA: MIT Press, 1996, 8: 757-763.
  • 8陈玉山,席斌.独立成份分析方法在股票分析中的应用[J].计算机工程与设计,2007,28(6):1473-1476. 被引量:5
  • 9郭崇慧,贾宏峰,张娜.基于ICA的时间序列聚类方法及其在股票数据分析中的应用[J].运筹与管理,2008,17(5):120-124. 被引量:13
  • 10Tsay R S. Analysis of Financial Time Series[M]. Wiley Series, 2002. 1-21.

二级参考文献59

共引文献25

同被引文献32

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部