期刊文献+

焙烧温度对溶胶-凝胶法制备磷酸钒锂的性能

Influences of roasting temperature on performance of lithium vanadium phosphate synthesized by sol-gel method
下载PDF
导出
摘要 以柠檬酸为螯合剂和C源,采用溶胶-凝胶法合成了Li3V2(PO4)3。通过交流阻抗、恒电流充放电及XRD等进行测试和表征。结果表明,焙烧温度对材料电化学性能影响较大。700℃合成的样品综合电化学性能较好,首次放电比容量为105.6 mAh/g,循环10次后比容量保持在99.0%,并且晶体结构发育完整,粒度分布均匀。 A sol-gel method was adopted to prepare Li3V2 (PO4)3 with citric acid as chelator and C sources. The electrochemical and physical performance of the products was characterized through galvanostatic charge-discharge tests, XRD and SEM. The results show that general electrochemical properties of Li3V2 (PO4)3 are influenced by roasting temperature. The materials prepared at 700℃ have better electrochemical properties with the first discharge specific capacity of 105.6 mAh/g and capacity retention of 99.0% after 10 cycles. As-synthesized materials have well developed crystal structure and uniform grain distribution.
出处 《电源技术》 CAS CSCD 北大核心 2012年第5期633-635,共3页 Chinese Journal of Power Sources
基金 广东省高校优秀青年创新人才培育项目(LYM09061)
关键词 溶胶-凝胶法 LI3V2(PO4)3 焙烧温度 电化学性能 sol-gel Li3V2(PO4)3 roasting temperature electrochemical performance
  • 相关文献

参考文献11

  • 1BARKER J, SAIDI M Y, SWOYER J L. A carbothermal reduction method for the preparation of electroactive materials for lithium ion application[J]. Electrochem Soc, 2003, 150(6): A 684-A 688.
  • 2刘素琴,唐联兴,黄可龙,张静.新型锂离子电池正极材料Li_3V_2(PO_4)_3的合成及其性能[J].中国有色金属学报,2005,15(8):1294-1299. 被引量:33
  • 3SAIDI M Y, BARKER J, HUANG H, et al. Performance characteris- tics of lithirm vanadirm phosphate as a cathode materials for li- thium-ion batteries [J]. J Power Sources, 2003, 119-121 : 266-272.
  • 4HUAN H, SHIEH-CHIEH Y, TRACY K, et al. Nanostructured com- posites: A high capacity, fast rate Li3V2(PO4)Jcarbon cathode for rechargeable lithium batteries[J]. Adv Materi,2004 (14): 1525-1528.
  • 5LI Yu-zhan, LIU Xin, YAN Jie. Study on synthesis routes and their influences on chemical and electrochemical performances of Li3V2- (PO4)Jcarbon[J]. Electmchimica Acta, 2007,53 ( 2 ) :474-479.
  • 6SHIH-CHIEH Y, GRONDEY H, STROBEL P, et al. Charge order- ing in lithium vanadium phosphate: Electrode materials for lithium- ion batteries[J]. J Am Chem Soc, 2003(125): 326-327.
  • 7PADHIA K, NANJUNDASWAMY K S, MASQUELIER C, et al. Mapping of transition metal redox energies in phosphates with NA- SICON structure by lithium intercalation [J]. J Electrochem Soc, 1997, 144: 2581-2584.
  • 8YIN S C, GRONODEY H, STROBEL P, et al.Electrochemical pro- perry: struncture relationships in monoclinic Li3-yVz(PO4) [J], J Am Chem Soc, 2003, 125 (34): 10402-10411.
  • 9SATO M, OHKAWA H, YOSHIDA K, et al. Enhancement of dis- charge capacity of Li3V2(PO4)3 by stabilizing the orthorhombic phase at room temperature[J]. Solid State Ionics, 2000, 135:137-139.
  • 10TANG An-pin, WANG Xian-you, YANG Shun-yi. A novel method to synthesize Li3V2(PO4)3/Ccomposite and its electrochemical Li in- tercalation performances[J]. Materials Letters, 2008, 62:3676-3678.

二级参考文献15

  • 1Nanjundaswamy K S, Padhi A K, Goodenough J B, et al. Synthesis, redox potential evaluation and electrochemical characteristic of NASICON-related-3D framework compounds[J]. Solid State Ionics, 1996, 92:1 -10.
  • 2Goodenough J B, Manivannan V, Padhi A K. Tuning the position of the redox couples in materials with NASICON structure by anionic subsitiution[J]. J Electrochem Soc, 1998, 145(5):1518- 1520.
  • 3Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Mapping of transition metal redox energies in phosphates with NASICON srtucture by lithium intercalation[J]. J Electrochem Soc, 1997, 144:2581-2586.
  • 4Saidi M Y, Barker J, Huang H, et al. Performance characteristics of lithium vanadium phosphate as a cathode materials for lithium-ion batteries[J]. J Power Sources, 2003, 119- 121:266- 272.
  • 5Barker J, Saidhi M Y, Swoyer J L. Electrochemical propertied of beta-LiVOPO4 prepared by carbothermal reduction [ J ]. J Electrochem Soc, 2004, 151 (6):A796-A800.
  • 6Masquelier C, Padhi A K, Nanjundaswamy K S, et al. New cathode materials for rechargeable lithium batteries:the 3-D framework structures Li3 Fe2 (XO4)3[J]. J Solid State Chem, 1998, 135:228-234.
  • 7Sato M, Ohkawa H, Yoshida K, et al. Enhancement of discharge capacity of Li3 V2 (PO4)3 by stabilizing the orthorhombic phase at room temperature[J]. Solid State Ionics, 2000, 135:137- 142.
  • 8HUANG Huan, Shieh-Chieh Y, Tracy K, et al.Nanostructured composites:a high capacity, fast rate Li3 V2 (PO4)3/carbon cathode for rechargeable lithium batteries[J]. Adv Mater, 2002, 21:1525-1528.
  • 9Sylvain F, Frederic L C, Carole B, et al. Comparison between different LiFePO4 synthesis routes and their influence on its physico-chemical properties [J]. J Power Sources, 2003, 119-121:252-257.
  • 10Yin S C, Gronodey H, Strobel P, et al. Electrochemical property:structure relationships in monoclinic Li3-y V2 (PO4)3 [J]. J Am Chem Soc, 2003,125(34):10402- 10411.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部