期刊文献+

共享伽玛脆弱模型在癫痫复发的应用及实现 被引量:3

Application of Shared Gamma Frailty Model for Epileptic Seizures and Implement
下载PDF
导出
摘要 目的探讨共享伽玛脆弱模型在癫痫复发事件数据的应用及R软件实现。方法收集癫痫复发数据,构建共享脆弱模型,利用伽玛脆弱来解释事件间的相关性。结果共享脆弱模型可以用来评价癫痫复发临床疗效,结果解释合理,R软件容易实现。结论共享脆弱模型可以很好地处理复发事件数据间的相关性。 ObjectiveTo explore the applications of shared gamma frailty models in recurrent event data about epileptic seizures,and implement of R software. MethodsCollecting the epileptic seizures data,establishing the shared frailty models,explaining the correlation between event times using gamma frailty. Results We can evaluate the clinical effect of epileptic seizures data using shared gamma frailty models,the explain is reasonable,the implement of R software is easy. ConclusionShared frailty models are useful for handling dependence in recurrent events data.
出处 《中国卫生统计》 CSCD 北大核心 2012年第2期175-176,180,共3页 Chinese Journal of Health Statistics
基金 国家青年科学基金项目资助(编号81001294) 山西医科大学青年基金资助(02200913)
关键词 共享脆弱模型 伽玛分布 复发事件数据 癫痫 Shared frailty models Gamma Distribution Recurrent event data Epileptic seizures
  • 相关文献

参考文献13

  • 1Clayton DG. Some approaches to the analysis of recurrent event data. Statistical Methods in Medical Research, 1994,3 (3) :244-262.
  • 2Kelly PJ, Lim LY. Survival analysis for recurrent event data:an applica- tion to childhood infectious diseases. Statistical in Medicine, 2000,19 ( 1 ) :13-33.
  • 3Hyun JL,Liu JX, Marlene ML. Comparison of Methods for Analyzing Recurrent Events Data:Application to the Emergency Department Visits of Pediatric Firearm Victims. Accident Analysis & Prevention, 2007,39 (2) :290-299.
  • 4Clayton DG. A model for association in bivariate life tables and its ap- plication in epidemiological studies of familial tendency in chronic dis- ease incidence. Biometrika, 1978,65 : 141 - 151.
  • 5Vaupel JW, Manton KG, Stallard E. The Impact of Heterogeneity in In- dividual Frailty on the Dynamics of Mortality. Demography, 1979,16: 439-454.
  • 6Hougaard P. Analysis of Multivariate Survival Data. New York : Spring- er-Verlag, 2000.
  • 7Michiels S, Baujat B, Mahe C, et al. Random effects survival models gave a better understanding of heterogeneity in individual patient data meta-analyses. Journal of Clinical Epidemiology, 2005,58 ( 3 ) : 238- 245.
  • 8Misra N, Gupta N, Gupta RD. Stochastic comparisons of multivariate frailty models. Journal of Statistical Planning and Inference, 2009,139 (6) :2084-2090.
  • 9Duchateau L, Janssen P. the frailty model (Statistics for Biology and Health). Springer :2007.
  • 10Hien TV, Vu, Matthew W, et al. A hybrid ML-EM algorithm for calcu- lation of maximum likelihood estimates in semiparametric shared frailty models. Computational Statistics & Data Analysis, 2002,40 ( 1 ) : 173- 187.

二级参考文献17

  • 1Aalen OO. Heterogeneity in survival analysis. Statistics in Medicine, 1988,7 : 1121-1137.
  • 2Batchelor JR, Hackett M. HL-A matching in treatment of burned patients with sin allografts. Lancet, 1977,2:581-583.
  • 3BjФrnstad JF. On the generalization of the likelihood function and likeli- hood principle. Journal of the American Statistical Association, 1996, 91:791-806.
  • 4Commenges D, Andersen PK. Sore Test of Homogeneity for Survival Data. Lifetime Data Analysis,1995,1:145-160.
  • 5Cox DR. Regression models and life tables ( with discussion). Journal of the Royal Statistical Society B, 1972,34 : 187-220.
  • 6Cox DR, Snell EJ. A General Definition of Residuals( with discussion). Journal of the Royal Statistical Society B, 1968,30:248-275.
  • 7Ha ID, Lee Y, Song JK. Hierarchical likelihood approach for frailty models. Biometrika,2001,88 :233-243.
  • 8Ha ID, Lee Y. Estimating frailty models via Poission hierarchical generalized linear models. Journal of Computational and Graphical,2003,12 : 663 -681.
  • 9Hougaard P. Frailty models for survival data. Lifetime Data Analysis, 1995,1:255-273.
  • 10Keyfitz N, Littman G. Mortality in a Heterogeneous Population. Population Studies, 1979,33 : 333 -342.

共引文献3

同被引文献16

  • 1余松林,向惠云.重复测量资料分析方法与SAS程序.北京:科学出版社,2003.
  • 2Clayton DG. Some approaches to the analysis of recurrent event data. Statistical Methods in Medical Research, 1994,3 ( 3 ) :244 -262.
  • 3Kelly PJ,Lim LY. Survival analysis for recurrent event data:an applica- tion to childhood infectious diseases. Statistical in Medicine, 2000,19 (1) :13-33.
  • 4Hyun JL, Liu JX, Marlene ML. Comparison of methods for analyzing recurrent events data:application to the emergency department visits of pediatric firearm victims. Accident Analysis & Prevention, 2007, 39 (2) :290-299.
  • 5Clayton DG. A model for association in bivariate life tables and its ap- plication in epidemiological studies of familial tendency in chronic dis- ease incidence. Biometrika, 1978,65 : 141-151.
  • 6Roberto G. Gutierrez. Parametric frailty and shared frailty survival mod- els. The Stata Journal. 2002,2( 1 ) :22-44.
  • 7Box-Steffensmeier JM, De Boef S. Repeated events survival models : the conditional frailty model. Statistical in Medicine, 2006,25 ( 20 ) : 3518- 3533.
  • 8Janet MB, Suzanna DB, Kyle AJ. Event dependence and heterogeneity in duration: the conditional frailty model. Political Analysis, 2007,15 ( 3 ) :237-256.
  • 9Duchateau L, Janssen P. The frailty model (Statistics for Biology and Health). Springer: 2007.
  • 10Rondeau V, Gonzalez JR. Frailtypack:a computer program for the anal- ysis of correlated failure time data using penalized likelihood estima- tion. Computer Methods and Programs in Biomedicine, 2005,80 ( 2 ) : 154-164.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部