期刊文献+

异构数据库相似语义属性聚类过程研究 被引量:1

Research of similar semantic attribute clustering process in heterogeneous database
下载PDF
导出
摘要 对异构数据库相似语义属性聚类过程及其关键技术进行研究,在词频-逆文件频率的基础上,提出数值类型属性信息的槽频率-逆文件频率处理方法,分别应用于文本信息和数值信息的相似语义属性聚类过程。研究结果表明:使用词频-逆文件频率和槽频率-逆文件频率方法相结合是异构数据库相似语义属性聚类实现的一种有效方法。 The key technology of the similar semantic attribute clustering process in the heterogeneous database was researched.On the basis of the term frequency-inverse document frequency,the processing method of bin frequency-inverse document bin frequency was proposed,which was applied in similar semantic attribute clustering prosess of the text information and numerical information.The results show that the method using term frequency–inverse document frequency and bin frequency-inverse document bin frequency is effective to the process of the similar semantic attribute clustering in the heterogeneous database.
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2012年第2期119-124,共6页 Journal of Railway Science and Engineering
基金 甘肃省自然科学基金资助项目(1014RJZA042)
关键词 异构数据库 相似语义 属性聚类 统一矢量化 词频—逆文件频率 槽频率—逆文件槽频率 自组织映射网络 heterogeneous database similar semantic attribute clustering unified vector(UV) term frequency inverse document frequency(TF-IDF) bin frequency-inverse document bin frequency(BF-IDBF) self-organizing mapping network(SOM)
  • 相关文献

参考文献11

  • 1,Sinka M P, Come D W. Web intelligence WI 2003. pro- ceedings IEEE/W IC International Conference on Soc [ C ]/! Los Alamitos. IEEE Copput, 2003 : 396 - 402.
  • 2宁浪.改进空间向量模型及其在文档自动分类系统中的应用[D].成都:西南交通大学,2010.
  • 3孙爱香.改进SOM算法在文本聚类中的应用[D].大连:大连交通大学,2009.
  • 4Bourennani F, Pu K Q, YING Zhu. Visual integration tool for heterogeneous data type by unified vectorization [ C ]//IEEE IRI. 2009 : 132 - 137.
  • 5于鹦.基于一维SOM神经网络的聚类及数据分析方法研究[D].天津:天津大学,2009.
  • 6Back B, Toivonen J, Vanharanta H, et al. Comparing nu- merical data and text information from annual reports u- sing self - organizing maps [ J ]. International Journal of Accounting Information Systems, 2001,4 (2) : 249 - 269.
  • 7Baeza- yates R, Ribeiro- neto R. Modern information retrieval[M]. Addison Wesley Longman, 1999.
  • 8李凡,鲁明羽,陆玉昌.关于文本特征抽取新方法的研究[J].清华大学学报(自然科学版),2001,41(7):98-101. 被引量:78
  • 9Han J, Kamber M. Data mining. Second Edition: Con- cepts and Techniques [ M ]. Morgan Kaufmann, 2006 : 72 -97.
  • 10陈华辉,施伯乐.基于随机投影的并行数据流聚类方法[J].模式识别与人工智能,2009,22(1):113-122. 被引量:3

二级参考文献27

  • 1Keogh E, Kasetty S. On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration. Data Mining and Knowledge Discovery, 2003, 7(4): 349-371
  • 2Guha S, Meyerson A, Mishra N, et al. Clustering Data Streams: Theory and Practice. IEEE Trans on Knowledge and Data Engineering, 2003, 15(3) : 515 -528
  • 3Aggarwal C C, Han Jiawei, Wang Jianyong, et al. A Framework for Clustering Evolving Data Streams //Proc of the 29th International Conference on Very Large Data Base. Berlin, Germany, 2003: 81 -92
  • 4Charikar M, O'Callaghan L, Panigrahy R. Better Streaming Algorithms for Clustering Problems // Proc of the 35th Annual ACM Symposium on Theory of Computing. San Diego, USA, 2003 : 30 - 39
  • 5Beringer J, Hullermeier E. Online Clustering of Parallel Data Streams. Data & Knowledge Engineering, 2006, 58(2): 180 - 204
  • 6Yeh M Y, Dai Biru, Chen M S. Clustering over Multiple Evolving Streams by Events and Correlations. IEEE Trans on Knowledge and Data Engineering, 2007, 19(10) : 1349 - 1362
  • 7Johnson W B, Lindenstrauss J. Extensions of Lipschitz Mappings into a Hilbert Space. Contemporary Mathematics, 1984, 26 ( 1 ) : 189 -206
  • 8Achlioptas D. Database-Friendly Random Projections//Proc of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. Santa Barbara, USA, 2001 : 274 -281
  • 9Linial N, London E, Rabinovich Y. The Geometry of Graphs and Some of Its Algorithmic Applications. Combinatorica, 1995, 15 (2) : 215 -245
  • 10Dasgupta S, Gupta A. An Elementary Proof of a Theorem of Johnson and Lindenstrauss. Random Structures & Algorithms, 2003, 22 (1): 60-65

共引文献80

同被引文献11

  • 1Yu Gao, He Deng-xu, Liu Gui-qing. An improved artificial fish- swarm algorithm and its application in {eed-forward neural networks[C]//Proc of the 4th International Conference on Ma- chine Learning and Cybernetics, 2005 : 2890-2894.
  • 2Qu Ying, Zhou Pang. Approximate inference algorithm based on a- :laptive ant colony and artificial fish swarm algorithm for credal net- works[C]//Proc of International Conference on Information Sci- race, Automation and Material System, 2011 : 656-661.
  • 3Shen Wei, Guo Xiao-pen, Wu Chao, et al. Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm[J].Knowledge- based Systems, 2011,24(3) :378-385.
  • 4YAZDANI D, TOOSI A N, MEYBODJ M R, Fuzzy adaptive artificial fish swarm algorithm[C]//Proc of the 23rd Australa- sian Joint Conference on Artificial Intelligence, 2010 : 334 -343.
  • 5Farid Bourennani, Ken Q. Pu, YING Zhu. Visual integration tool for heterogeneous data type by unified vectorization[C]// IEEE IRI, 2009.
  • 6唐忠,邱超,丁竑.电子战仿真异构数据库数据集成应用研究[J].舰船电子工程,2009,29(1):132-134. 被引量:2
  • 7李志华,王士同.异构属性数据的量子聚类方法研究[J].计算机工程与应用,2009,45(23):63-66. 被引量:2
  • 8王会颖,章义刚.求解聚类问题的改进人工鱼群算法[J].计算机技术与发展,2010,20(3):84-87. 被引量:8
  • 9姚祥光,周永权,李咏梅.人工鱼群与微粒群混合优化算法[J].计算机应用研究,2010,27(6):2084-2086. 被引量:24
  • 10韦修喜,曾海文,周永权.云人工鱼群算法[J].计算机工程与应用,2010,46(22):26-29. 被引量:11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部