期刊文献+

基于修正核函数SVM的网络入侵检测 被引量:12

Network intrusion detection based on modified kernel function SVM
下载PDF
导出
摘要 支持向量机分类方法在小样本、非线性情况下具有较好的泛化性能,在入侵检测系统中有着广泛的应用。针对入侵检测过程中可能出现的由两类样本不平衡造成的分离超平面偏移现象,以核函数所蕴含的黎曼几何为依据,引入一个伪一致性变换函数,对核函数进行修改,提高支持向量机的分类泛化能力,建立基于支持向量机的网络入侵检测系统,并对系统总体结构和运行机制进行了详细的描述。实验仿真表明,该系统可有效地提高入侵检测的准确率,改善由于数据集不平衡造成的支持向量机分类偏移的情况。 As the support vector machine(SVM) classification approach has a good generalization performance in the cases of small number and non-linear samples,it is widely used in network intrusion detection fields.In order to resolve the offset phenomenon of separating a hyperplane caused by imbalanced data,Riemannian geometry inherent in a nuclear function is regarded as an important basis and a pseudo-consistency transformation function is also introduced,both of which are used to modify the kernel function and improve the generalization ability of SVM classification.On this basis,an intrusion detection system based on modified kernel function SVM is established,and a detailed description of the overall structure of the system and operating mechanism is made.Finally,simulation experiment shows that this system can achieve a more accurate detection rate and improve the SVM's classification offset phenomenon caused by imbalanced data sets.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第5期1036-1040,共5页 Systems Engineering and Electronics
基金 海军十一五预研项目基金(4010601010201)资助课题
关键词 入侵检测 支持向量机 修正核函数 不平衡数据 黎曼几何 intrusion detection support vector machine(SVM) modified kernel function imbalanced data Riemannian geometry
  • 相关文献

参考文献16

  • 1Chen J Y, Yang D Y, Matsumoto N. A study of detector gener ation algorithms based on artificial immune in intrusion detection system[J]. WSEAS Trans. on Biology and Biomedicine,2007, 3(4) : 29 - 35.
  • 2俞研,黄皓.基于改进多目标遗传算法的入侵检测集成方法(英文)[J].软件学报,2007,18(6):1369-1378. 被引量:21
  • 3Iren L F, Francisco M P, Francisco J G, et al. Intrusion detec-tion method using neural networks based on the reduction of characteristics[C]//Proc, of the lOth International Work-Con- ference on Aarti fical Neural Networks, 2009 : 1296 - 1303.
  • 4Xie L X, Zhu D, Yang H Y. Research on SVM based network intrusion detection elassifieation[C]// Proc. of the 6th Interna tional Conference on Fuzzy Systems and Knowledge Discovery, 2009: 362 - 366.
  • 5于秋玲.基于改进NN-SVM算法的网络入侵检测[J].系统工程理论与实践,2010,30(1):126-130. 被引量:6
  • 6张雪芹,顾春华,吴吉义.基于约简支持向量机的快速入侵检测算法[J].华南理工大学学报(自然科学版),2011,39(2):108-112. 被引量:6
  • 7Yi Y, Wu J S, Xu W. Incremental SVM based on reserved set for network intrusion detection[J]. Expert Systems with Appli cations, 2011,38(6) : 7698 -7707.
  • 8Latifur K, Mamoun A, Bhavani T. A new intrusion detection system using support vector machines and hierarchical clustering [J]. The International Journal on Very Large Data Bases, 2007,16(4): 507-521.
  • 9Zhao Z Y, Zhong P, Zhao Y H. Learning SVM with weighted maximum margin criterion for classification of imbalanced data [J]. Mathematical and Computer Modelling, 2011, 54(3 - 4) : 1093 - 1099.
  • 10Han H, Wang W, Mao B. Borderline smote: a new over-sam- pling method in imbalaneed data sets learning[C]//Proc, of the International Conference on Intelligent Computing, 2005 878 - 887.

二级参考文献57

  • 1李程雄,丁月华,文贵华.SVM-KNN组合改进算法在专利文本分类中的应用[J].计算机工程与应用,2006,42(20):193-195. 被引量:23
  • 2段丹青,陈松乔,杨卫平.基于SVM主动学习的入侵检测系统[J].计算机工程,2007,33(1):153-155. 被引量:19
  • 3Vapnik V N. An overview of statistical learning theory[J]. IEEE Transactions on Neura Networks, 1999, 10(5): 988-999.
  • 4Vapnik V N. Statistical Learning Theory[M]. 2nd ed. New York: Springer Verlag, 1999.
  • 5Klaus R M, Sebastian M, Gunnar R, et al. An introduction to kernel-based learning algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201.
  • 6Sabhnani M, Serpen G. Application of machine learning algorithms to KDD intrusion detection dataset within misuse detection context[C]//International Conference on Machine Learning; Models, Technologies and Applications, (MLMTA), Las Vegas, Nevada, USA, 2005: 209-215.
  • 7http: //www.kdd.ics.uci.edu/dat abases/kddcup99/kddcup99.htm.
  • 8NIST Special Publication 800-31 ,Intrusion detection system [S].
  • 9Cortes C, Vapnik V. Support vector networks [J]. Machine Learning, 1995,20 ( 3 ) :273-297.
  • 10Chen B, Johnson M. Protein local 3D structure prediction by Super Granule Support Vector Machines (Super GSVM) [J]. BMC Bioinformatics, 2009, 10 ( Suppl 11 ) : S15.

共引文献30

同被引文献103

引证文献12

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部