期刊文献+

基于极值理论的系统最大值指标评定方法 被引量:4

System maximum-error specification oriented testing methodology based on extreme value theory
下载PDF
导出
摘要 提出了基于极值理论的系统最大值指标评定与测算方法,为某些特殊领域(如航空、航天、国防)中的长周期系统的最大值指标评定提供了理论依据。首先,遵循一定的原则对系统输出的误差序列进行区组划分,取得近乎独立的最大值观测序列;其次,对最大值观测序列应用极值理论建模,取得一定重现期下的重现水平和不确定度;然后考查重现水平与最大值指标间的关系,并应用经典统计学理论完成对系统最大值指标的评定与测算;接着,给出了具体的应用实例,实验结果表明,该方法是可行的。最后,从不同角度对时间序列模型方法与极值理论方法建模求解系统最大值指标的特点进行了对比分析,并给出了相关结论。 A testing methodology for the system maximum-error specification based on the extreme value theory is proposed.It an provide a theoretic basis for the testing of maximum-error specification on long-working systems in some special fields,such as aviation,aeronautics and national defenses.Firstly,the error series of system outputs is divided into blocks by obeying some essential principals,and the corresponding maximum error series which are nearly independent with each other are gotten.Secondly,the extreme value models for the maximum error series are built and the return level and its uncertainty are obtained under some return period.Then,the relationships between the return level and the maximum-error specification are researched and the system maximum-error specification is tested and evaluated by using classic statistical theories.After that,a practical sample is given to introduce the methodology more clearly,which shows that this methodology is feasible.Finally,by comparing the proposed methodology with that based on the time series models from different points of view,some conclusions are given.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第5期1073-1084,共12页 Systems Engineering and Electronics
基金 教育部博士点新教师基金(200802881012)资助课题
关键词 质量控制与可靠性管理 评定方法 广义极值 最大值指标 quality control and reliability management testing methodology generalized extreme value(GEV) maximum-error specification
  • 相关文献

参考文献19

  • 1Cooley D. Extreme value analysis and the study of climate change: a commentary on Wigley 1988[J]. Climate Change, 2009,97(1 - 2) :77 - 83.
  • 2Minguez R, Mendez F J, zaguirre C, et al. Pseudo-optimal pa- rameter selection of non-stationary generalized extreme value models for environmental variables[J]. Environmental Model- ling & Software ,2010,25(12) :1592 - 1607.
  • 3Chen H, Cummins J D. Longevity bond premiums: the extreme value approach and risk cubic pricing[J]. Insurance: Mathemat its and Economics ,2010,46(1) :150 - 161.
  • 4Kogana V, Rind T. Determining critical power equipment inventory using extreme value approach and an auxiliary Poisson model [J]. Computers & Industrial Engineering ,2011,60(1) :25 - 33.
  • 5Prasannavenkatesan R, Przybyla C P, Salajegheh N, et al. Sim- ulated extreme value fatigue sensitivity to inclusions and pores in martensitic gear steels [J]. Engineering Fracture Mechanics, 2011,78(6) :140 - 155.
  • 6Reiss R D, Thomas M. Statistical analysis of extreme values with applications to insurance, finance, hydrology and other fields[M]. 3rd ed. Berlin: Birkhauser Verlag,2007.
  • 7Albert M G, Tank K, Zwiers F W, et al. C-uidelineson analysis of extremes in a changing climate in support of informed decisions for adaptation[M]. Geneva: World Meteorological Organization,2009.
  • 8Ruggiero P, Komar P D, Allan J C. Increasing wave heights and extreme value projections: the wave climate of the U.S. Pacific Northwest[J]. Coastal Engineering, 2010,57(5) : 539 - 552.
  • 9Khaliq M N, Ouarda T B M J, Ondo J C, et al. Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review [J]. Journal of Hydrology,2006,329(3 - 4) :534 - 552.
  • 10Shrivastava U, Dawar G, Dhingra S, et al. Extreme value analysis for record loss prediction during volatile market[J]. Management Science and Engineering ,2011,5(1) : 19 - 25.

二级参考文献3

共引文献6

同被引文献35

  • 1Xu T X, Dong Q, Zhang Y L. The research of flight reliability evaluation of missile[C]//Proc, of the International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering, 2011:114 - 117.
  • 2Shao Z J, Zhang Q Z, Li Y P, et al. Storage reliability assessment for missile-borne electronic products with small sampling based on Bayes theorem[C]//Proc, of the 6th IEEE Conference on Industrial Electronics and Applications, 2011 : 2605 - 2609.
  • 3Hu Z H, Luo J X. Research on Bayesian evaluation method of missile hit accuracy[C]// Proc. of the 4th International Symposium on Computational Intelligence and Design, 2011: 114 -117.
  • 4Huang X Y, Peng D L. The sequential likelihood ratio test VSMM algorithm for maneuvering target tracking[C]//Proc.of the 8th World Congress on Intelligent Control and Automation, 2010: 6864 - 6867.
  • 5Liu Q, Zhou J L, Jin G, et al. Bayesian sequential demonstration based on performance reliability for long life aerospace product[C]//Proc, of the 2nd International Conference on Compurer Modeling and Simulation, 2010 : 445 - 449.
  • 6Gong Y X, Yang H W, Hu W D, et al. An efficient particle filter based distributed track-before-detect algorithm for weak targets [C] // Proc. of the International Radar Conference, 2009:1 -6.
  • 7Candy J V, Chambers D H. Physics-based detection of radioactive contraband: a sequential Bayesian approach [J]. Nuclear Science, 2009, 56(6):3694-3711.
  • 8ISO 2859 - 5 : 2005. Sampling procedures for inspection by attributes-part 5: system of sequential sampling plans indexed by acceptance quantity limit (AQL) for lot-by-lot inspection[S]. London: British Standard Institution, 2006.
  • 9GB/T8051-2008.计数序贯抽样方案[S].北京:中国标准出版社,2008.
  • 10Kulldorff M, Davis R L, Kolczak M, et al. A maximized sequential probability ratio test for drug and vaccine safety surveillance [J]. Sequential Analysis, 2011, 30(1) :58 - 78.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部