期刊文献+

生物芯片中周期性电渗驱动液体薄膜的流动特性 被引量:5

FLOW CHARACTERISTICS OF LIQUID FILMS DRIVEN BY PERIODIC ELECTRO-OSMOSIS IN BIOCHIPS
下载PDF
导出
摘要 研究了二维周期性电渗驱动液体薄膜的流动特性.以Debye-H(u|¨)ckel假设近似下线性化的Poisson-Boltzmann方程描述双电层电动势分布和电荷密度的分布关系,与黏性不可压缩流体Navier-Stokes方程相耦合,得到流体在自由面与固壁之间的周期电渗流流场的精确解.结果显示,薄膜内速度振幅与流体黏性密切相关,雷诺数越大,速度振幅就越小.该文还细致分析了雷诺数和自由面ζ电势对自由面的流速振幅和薄膜内速度相位差的影响. The flow of a thin film on a solid substrate driven by periodic electro-osmosis is studied in the present paper. To describe the relation between potential of electric double layer and charge density, the Poisson-Boltzmann equation is utilized under the Debye-Hiickel approximation. An analytical solution for the film is obtained by solving the periodic electro-osmosis driven system, coupling with the Navier-Stokes equation for incompressible viscous fluid. Results indicate that amplitude of the flow velocity in the thin film strongly depends on the Reynolds number, i.e., the amplitude decreases as the Reynolds number increasing. The influence of the 4 potential, as well as the viscosity, is also analyzed on the flow velocity at the free surface and phase difference of the oscillating velocity.
出处 《力学学报》 EI CSCD 北大核心 2012年第3期600-606,共7页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金项目(10872122) 上海市科委重大项目(10dz2212600) 教育部博士点基金项目(20103108110004)和教育部长江学者创新团队项目(IRT0844)资助~~
关键词 双电层 自由面 周期性电渗流 雷诺数 electric double layer, free surface, periodical electro-osmosis, Reynolds number
  • 相关文献

参考文献24

  • 1Dutta P, Beskok A, Warburton TC. Numerical simulation of mixed electroosmotic/pressure driven micro flows. Nu- merical Heat Transfer Part A, 2002, 41:131-148.
  • 2Reuss F. Sur un nouvel effet de le electricite glavanique. Mere Soc Imp Nat Mosc, 1809, 2:327-37.
  • 3Ghosal S. Electrokinetic flow and dispersion in capillary electrophoresis. Annu Rev Fluid Mech, 2006, 38:309-338.
  • 4Park HW, Lee JS, Kim TW. Comparison of the Nernst- Planck model and the Poisson-Boltzmann model for elec- troosmotic flows in microchannels. J Colloid Interface Sci, 2007, 315:731-739.
  • 5Burgreen D, Nakache FR. Electrokinetic flow in ultrafine capillary slits. J Phys Chem, 1964, 68:1084-1091.
  • 6Levine S, Marriott JR, Neale G, et al. Theory of elec- trokinetic flow in fine cylindrical capillaries at high zeta- potentials. J Colloid Interface Sci, 1975, 52:136-149.
  • 7Tsao HK. Electroosmotic flow through an annulus. J Col- loid Interface Sci, 2000, 225:247-250.
  • 8Wang CY, Liu YH, Chang CC. Analytical solution of electro-osmotic flow in a semicircular microchannel. Phys Fluids, 2008, 20:063105.
  • 9Dutta P, Beskok A. Analytical solution of time periodic electroosmotic flows: analogies to stokes' second problem. Anal Chem, 2001, 73:5097-5102.
  • 10Ghosal S. Lubrication theory for electroosmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. Journal of Fluid Mechanics, 2002, 459:103-128.

二级参考文献31

  • 1聂德明,林建忠,石兴.弯管电渗流场的数值模拟及研究[J].分析化学,2004,32(8):988-992. 被引量:6
  • 2吴健康,王贤明.生物芯片微通道周期性电渗流特性[J].力学学报,2006,38(3):309-315. 被引量:14
  • 3Patankar NA, Hu HH. Numerical simulation of electroosmotic flow. Analytical Chemistry, 1998, 70: 1870-1881.
  • 4Bianchi F, Ferrigno R, Girault HH. Finite element simulation of an electroosmotic-driven flow division at a T- Junction of microscale dimensions. Analytical Chemistry, 2000, 72:1987-1993.
  • 5Jin Y, Luo GA. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips. Electrophoresis, 2003, 24:1242-1252.
  • 6Christopher MB, Robert HD. Electroosmotic flow in channels with step changes in zeta potential and cross section. Journal of Colloid and Interface Science, 2004, 270: 242- 246.
  • 7Xuan X, Sinton D, Li D. Thermal end effects on electroosmotic flow in a capillary. International Journal of Heat and Mass Transfer, 2004, 47:3145-3157.
  • 8Tian FZ, Li BM, Kwok DY. Lattice Boltzmann simulation of electroosmotic flows in micro- and nanochannels. ICMENS, 2004, 294-299.
  • 9Chai ZH, Shi BC. Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Physics Letters A, 2007, 364:183-188.
  • 10Masliyah J. Electrokinetic Transport Phenomena, Alberta Oil Sands Technology and Research Authority. Alberta, Canada, 1994.

共引文献19

同被引文献100

  • 1曾雪锋,董良,吴建刚,岳瑞峰,刘理天.介质上电润湿现象的研究[J].仪器仪表学报,2004,25(z1):263-264. 被引量:7
  • 2曾雪锋,岳瑞锋,吴建刚,董良,刘理天.Actuation and Control of Droplets by Using Electrowetting-on-Dielectric[J].Chinese Physics Letters,2004,21(9):1851-1854. 被引量:3
  • 3康明,岳瑞峰,吴建刚,欧阳帆,刘理天.基于EWOD的锥形管状结构液体变焦透镜[J].传感技术学报,2006,19(05A):1768-1770. 被引量:11
  • 4岳瑞峰,吴建刚,曾雪锋,康明,刘理天.基于介质上电润湿的液滴产生器的研究[J].电子器件,2007,30(1):41-45. 被引量:3
  • 5REUSS F F. Charge-induced flow[A].1809.327-337.
  • 6BURGREEN D,NAKACHE F. Electrokinetic flow in ultrafine capillary slits[J].The Journal of Physical Chemistry,1964,(05):1084-1091.
  • 7LEVINE S,MARRIOTT J R,NEALE G. Theory of electrokinetic flow in fine cylindrical capillaries at high zeta-potentials[J].{H}Journal of Colloid and Interface Science,1975.136-149.
  • 8TSAO H K. Electroosmotic flow through an annulus[J].{H}Journal of Colloid and Interface Science,2000.247-250.
  • 9WANG C Y,LIU Y H,CHANG C C. Analytical solution of electro-osmotic flow in a semicircular microchannel[J].{H}Physics of Fluids,2008,(06):063105.
  • 10DUTTA P,BESKOK A. Analytical solution of time periodic electroosmotic flows:analogies to stokes'second problem[J].{H}Analytical Chemistry,2001.5097-5102.

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部