期刊文献+

蜗窗激励评价的有限元计算模型研究 被引量:12

EVALUATION OF ROUND WINDOW STIMULATION BY A FE MODEL OF HUMAN AUDITORY PERIPHERY
下载PDF
导出
摘要 蜗窗驱动是实现中耳听力装置与耳蜗耦合的新途径.利用外耳道、中耳和耳蜗集成有限元模型,分别模拟外耳道声激励经听骨链、前庭窗传入内耳的正向传递过程和蜗窗机械激励在耳中逆向传递过程,计算获得中耳和耳蜗的传递函数.比较蜗窗激励和外耳道激励下耳蜗基底膜的振动,提出了以基底膜最佳反应部位位移相等为准则的蜗窗等效激励力计算方法.理论计算获得的蜗窗等效激励力与相关文献根据实验数据预测结果一致.计算结果还表明耳蜗窗正、逆向激励时,基底膜上最佳反应部位无变化,但在蜗窗逆向激励耳蜗时,低频下驱动基底膜运动的效率比高频时低.所获得的理论结果可为蜗窗驱动的听力装置设计和现有装置的应用提供参考. The round window placement of a vibratory transducer is a new approach for coupling an implantable hearing system to the cochlea. To evaluate the vibration transfer to the cochlear fluids and partition in response to normal acoustic stimulation and to mechanical stimulation of the round window, an acoustic- structure coupled finite element (FE) analysis was conducted by utilizing recently developed FE model which consists of the external ear canal, middle ear and cochlea. The middle ear and cochlear transfer functions such as the sound pressure gain across middle ear, intracochlear pressures, as well as basilar membrane vibration, were derived, during normal forward sound stimulation as well as reverse RW stimulation. The present results show that the round window stimulation with a harmonic pressure produces basilar membrane response similar to normal forward sound stimulation. Then a model was proposed to calculate the force required of an actuator at the round window to produce a basilar membrane displacement that is equivalent to a stimulus produced in normal ear by a given external ear-canal pressure. The information is essential for supporting the optimization of the actuators and adapting existing prostheses specifically for round window stimulation in order to insure sufficient acoustic output.
出处 《力学学报》 EI CSCD 北大核心 2012年第3期622-630,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(30870605) 教育部留学回国人员科研启动基金资助项目~~
关键词 中耳助听装置 耳蜗 蜗窗 逆向传递 有限元模型 active middle ear prosthesis, cochlea, round window, reverse transmission, finite element modeling
  • 相关文献

参考文献22

  • 1Colletti V, Soli SD, Colletti L. Treatment of mixed hear- ing losses via implantation of a vibratory transducer on the round window. Int J of Audiology,2006, 45(10): 600-608.
  • 2Nakajima HH, Merchant SN, Rosowski JJ. Performance consideration of prosthetic actuators for round-window stimulation. Hear Res, 2010, 263(1-2): 114-119.
  • 3Wever EG, Lawrence M. The acoustic pathways to the cochlea. J Acoust Soc Am, 1950, 22(4): 460-467.
  • 4Spindel JH, Lambert PR, Ruth RA. The round window electromagnetic implantable hearing aid approach. Oto- larynglo Clin North Am, 1995, 28(1): 189-205.
  • 5刘后广,塔娜,饶柱石.悬浮振子对中耳声传播特性影响的数值研究[J].力学学报,2010,42(1):109-114. 被引量:12
  • 6Zhao F, Koike T,Wang J, et al. Finite element analysis of the middle ear transfer functions and related pathologies. Medical Engineering and Physics, 2009, 31(8): 907-916.
  • 7刘迎曦,李生,孙秀珍.人耳传声数值模型[J].力学学报,2008,40(1):107-113. 被引量:42
  • 8姚文娟,李武,付黎杰,黄新生.中耳结构数值模拟及传导振动分析[J].系统仿真学报,2009,21(3):651-654. 被引量:22
  • 9Gan RZ, Brian R, Wang XL. Modeling of sound trans- mission from ear canal to cochlea, Annals of Biomedical Engineering, 2007, 35(12): 2180-2195.
  • 10王振龙,王学林,胡于进,师洪,程华茂.基于中耳与耳蜗集成有限元模型的耳声传递模拟[J].中国生物医学工程学报,2011,30(1):60-66. 被引量:20

二级参考文献77

  • 1郭继周,汪若峰,刘莎,赵丽萍,李玉珍.植入式人工中耳听器-GWⅠ型的研制及动物实验研究[J].耳鼻咽喉(头颈外科),1994,1(4):237-240. 被引量:6
  • 2马芙蓉,Thomas Linder,Alex Huber,Heidi Felix,Anita Pollak.新鲜颞骨模型建立在中耳传声机制研究中的作用[J].中国耳鼻咽喉头颈外科,2005,12(6):359-361. 被引量:9
  • 3Aibara R, Welsh J T, Puria S, Goode R L. Human middle ear sound transfer function and cochlear input impedance [J]. Hearing Research (S0378-5955), 2001, 152(1/2): 100-109.
  • 4Wiet G J, Schmalbrock P, Powell K, Stredney D. Use of ultrahigh-resolution data for temporal bone dissection simulation, [J]. Otolaryngol Head Neck Surg (SO 194-5998), 2005, 133(6): 911-915.
  • 5Tao C, Rong Z G Mechanical Properties of Stapedial Tendon in Human Middle Ear [J]. Journal of Biomechanical Engineering (S0148-0731), 2007, 129(6): 913-918.
  • 6Susan E V. Non-ossicular signal transmission in human middle ears: Experimental assessment of the "acoustic route" with perforated tympanic membranes, [J]. J. Acoust. Soc. Am. (S0001-4966), 2007, 122(4): 2135-2153.
  • 7Kevin N O, Sunil P. Middle ear cavity and ear canal pressure-driven stapes velocity responses in human eadaveric temporal bones. [J]. J. Acoust. Soc. Am. (S0001-4966), 2006, 120(3): 1517-1528.
  • 8Q Sun, R Z Gan, K-H Chang, K J Donner. Computer-integrated finite element modeling of human middle ear [J]. Biomechanics and Modeling in Mechanobiology (S1617-7959), 2002, 1(2): 109-122.
  • 9Chia-Fone Lee, Peir-Rong Chen, Wen-Jeng Lee. Computer aided three-dimensional reconstruction and modeling of middle ear biomechanics by high-resolution computed tomography and finite element analysis, Biomedical Engineering (S1016-2356), 2006, 18(5): 214-221.
  • 10Li Qi, Hengjin Liu, Justyn Lutfy, et al.A non-linear finite-element model of the newborn ear canal [J]. J. Acoust. Soc. Am (S0001-4966), 2006, 120(6): 3789-3798.

共引文献54

同被引文献97

  • 1刘迎曦,李生,孙秀珍.人耳鼓膜病变数值分析[J].医用生物力学,2008,23(4):275-278. 被引量:15
  • 2李武,姚文娟,李晓青.重力对锤砧固定型鼓室硬化手术疗效的影响研究[J].医用生物力学,2009,24(S1):75-76. 被引量:1
  • 3von Bksy G. Experiments in Hearing[ M]. Wever E G transl. New York, Toronto, London: McGraw-Hill Bool Company, Inc, 1950.
  • 4Leveque R J, Peskin C S, Lax P D. Solution of a two-dimensional cochlea model with fluid viscosity[J]. SIAM Journal on Applied Mathematics, 1988, 48( 1 ) : 191-213.
  • 5Allen J. Two-dimensional cochlear fluid model: new results [ J]. The Journal of the Acoustical Society of America, 1977, 61(1) : 110-119.
  • 6Givelberg E, Bunn J. A comprehensive three-dimensional model of the cochlea[ J]. Journal of Computational Physics, 2003, 191(2): 377-391.
  • 7Manoussald D, Dimitriadis E, Chadwick R. Cochlea' s graded curvature effect on low fre- quency waves [ J ]. Physical Review Letters, 2006, 96 (8) : 88701.
  • 8Manoussald D, Chadwick R S, Dimitriadis E. The influence of cochlear shape on low-frequen- cy hearing[ J]. Proceedings of the National Academy of Sciences, 2008, 105(16) : 6162-6166.
  • 9Babbs C F. Quantitative reappraisal of the Helmholtz-Guyton resonance theory of frequency tuning in the cochlea[J] Journal of Biophysics, 2011, 54(6) : 1-16.
  • 10Kim N, Yoon Yongjin, Steele C, Puria S. Cochlear anatomy using micro computed tomo- graphy (μCT) imaging in biomedical optics (BiOS) [ J]. Proc SPIE 6842, Photonic Therapeu- tics and Diagnostics IV, 2008,6842: 1A-1.

引证文献12

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部