期刊文献+

分子分型技术在乳酸菌鉴定及多态性研究中的应用 被引量:8

Advances in Molecular Approaches and Their Applications in Lactic Acid Bacteria
原文传递
导出
摘要 分子分型技术迅速发展与革新已在乳酸菌鉴定及多态性研究方面得到广泛应用。研究发现,遗传变异是产生乳酸菌多态性的根本原因,对遗传变异的检测与分析有助于人们从分子层面理解乳酸菌的各种生物学现象;分子分型及其与表型特性的相关性为我们解释遗传变异提供了丰富的材料。基于基因或DNA基础的分子分型技术(如16S rRNA,RAPD,PCR-PFLP,AFLP等)常被用于乳酸菌的分类鉴定、多态性分析、生态学研究及进化研究等。近几年,随着分子生物学技术的进步,这些常规的分型技术体系逐渐得到发展和完善,它们的优缺点及应用范围也被人们所掌握。本研究概述了几种常用于乳酸菌分类鉴定及多态性研究的分子分型技术(16S rRNA,16S-23S rRNA,RAPD,PCR-PFLP,PFGE,AFLP,rep-PCR),并对这些技术的原理、方法、优缺点及其近几年在乳酸菌研究中的应用进行了介绍。 Recent years have seen an explosion in the development and application of molecular tools on identification and characterization of lactic acid bacteria. Research shows that genetic variation is the root cause of genetic diversity. Detection and analysis of genetic variation can help us understand the molecular basis of various biological phenomena in lactic acid bacteria. Since the entire lactic acid bacteria kingdom cannot be covered under sequencing projects, molecular markers and their correlation to phenotypes provide us with requisite landmarks for elucidation of genetic variation. Genetic or DNA based marker techniques such as 16S rRNA, 16S-23 S rRNA, RAPD, PCR-PFLP, AFLP and rep-PCR are routinely being used in evolutionary, taxonomical, phylogenic and genetic studies of lactic acid bacteria. With the advancement of molecular biology, these molecular techniques have been well established and their advantages as well as limitations have been realized. Hence, the aim of this review is to provide an overview of some rapid and reliable molecular methods used for identifying and characterizing species and strains of LAB associated with food and industry. Their principles, methodologies, advantages, disadvantages as well as aDNicabilitv are detailed.
出处 《食品工业》 北大核心 2012年第5期69-73,共5页 The Food Industry
基金 高等学校博士点科研基金项目(20090204120028) 现代农业产业技术体系专项资金资助(CARS-30)
关键词 分子分型技术 乳酸菌 鉴定 多态性 molecular approaches lactic acid bacteria identification polymorphism
  • 相关文献

参考文献35

  • 1Konings W N, Kok J, Kuipers O P, et al. Lactic acid bacteria: the bugs of the new millennium[J]. Curt Opin Microbiol, 2000, 3(3): 276-282.
  • 2Furet J P, Quenee P, Tailliez P. Molecular quantification of lactic acid bacteria in fermented milk products using real- time quantitative PCR[J]. Int J Food Microbiol, 2004, 97(2): 197-207.
  • 3McCartney A L. Application of molecular biological methods for studying probiotics and the gut flora[J]. Br J Nutr, 2002, 88(Suppl 1): 29-37.
  • 4Clarridge J E 3rd. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases[l]. Clin Microbiol Rev, 2004, 17(4): 840-862.
  • 5Roller C, Ludwig W, Schleifer K H. Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes[J]. J Gen Microbiol, 1992, 138(6): 1167-1175.
  • 6Cai H, Archambault M, Prescott J F. 16S ribosomal RNA sequence-based identification of veterinary clinical bacteria[J]. J Vet Diagn Invest, 2003, 15(5): 465-469.
  • 7Woo P C, Lau S K, Teng J L, et al. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories[J]. Clin Microbiol Infect, 2008, 14(10): 908-934.
  • 8Giirtler V, Stanisich V A. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region[J]. Microbiology, 1996, 142 ( Pt 1): 3-16.
  • 9Berthier F, Ehrlich S D. Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region[J]. FEMS Microbiol Lett, 1998, 161(1): 97-106.
  • 10Mora D, Ricci G, Guglielmetti S, et al. 16S-23S rRNA intergenic spacer region sequence variation in Streptococcusthermophilus and related dairy streptococci and development of a multiplex ITS-SSCP analysis for their identification[J]. Microbiology, 2003, 149(Pt 3): 807-813.

同被引文献88

引证文献8

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部