期刊文献+

传感器阵列预测空域多信号分类目标定位跟踪 被引量:4

Sensor array based predicted spatial multi-signal classification method for target localization and tracking
下载PDF
导出
摘要 目标定位跟踪技术广泛应用于军事民用领域,是当前研究的热点与难点。提出了一种空域多信号分类-自回归粒子滤波(multiple signal classification autoregressive particle filter,MUSIC-ARPF)方法,定位跟踪地面目标。该方法使用多信号分类(multiple signal classification,MUSIC)算法估计目标波达方向(direction of arrival,DOA)并计算目标信号源位置,利用自回归(autoregressive model,AR)模型和粒子滤波(particle filter,PF)算法预测信号源下一时刻位置,进而自适应选择通带与阻带扇面进行空域滤波,同时调整MUSIC算法中谱峰搜索区域,提高DOA估计的分辨率,减少目标定位的扫描域。实验结果表明,空域MUSIC-ARPF方法能够减少目标定位时间,提高目标跟踪精度。 Target localization and tracking technology,widely used in military and civil applications,is a hot and difficult research issue.This paper proposes a spatial multiple signal classification autoregressive particle filter(MUSIC-ARPF) method to locate and track ground objects.This method firstly uses multiple signal classification(MUSIC) algorithm to estimate the direction of arrival(DOA) of the target signal source and calculate the position of the target.Secondly,an autoregressive model particle filter(ARPF) algorithm is introduced to predict the position of the signal source at the next moment.Thirdly,both the pass band and stop band of the target spatial filter are self-adaptively selected for spatial filtering,and the spectral peak searching sector of the MUSIC algorithm is adjusted according to the predicted position,which can improve the resolution of the DOA estimation and narrow the algorithm scanning band.Experiment results show that the spatial MUSIC-ARPF method can effectively enhance both target localization speed and tracking accuracy.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第5期970-975,共6页 Chinese Journal of Scientific Instrument
基金 国家973计划(2006CB303000) 国家自然科学基金(60970103,60673176,60373014,50175056) 国家教育部博士点基金(20090002110016)资助项目
关键词 传感器阵列 空域滤波 目标定位跟踪 多信号分类 自回归粒子滤波 sensor array spatial filter target localization and tracking MUSIC algorithm ARPF algorithm
  • 相关文献

参考文献15

  • 1KO Y H, KIM Y J. 2-D DoA estimation with cell search- ing for a mobile relay station with uniform circular array[J]. IEEE Transactions on Communications, 2010, 58 (10) :2805-2809.
  • 2LI G, YANG SH W. Direction of arrival estimation in time modulated linear arrays with unidirectional phase center motion [ J ]. IEEE Transactions on Antennas and Propagation, 2010, 58(4) : 1105-1111.
  • 3CHEN F J, KWONG S. ESPRIT-Like two-dimensional DOA estimation for coherent signals [ J ]. IEEE Transac- tions on Aerospace and Electronic Systems, 2010, 46 (3) : 1477-1484.
  • 4ZHANG Y, YE Z. Estimation of two-dimensional direc- tion-of-arrival for uncorrelated and coherent signals with low complexity[ J ]. IET Radar Sonar Navigation, 2010, 4(4) :507-519.
  • 5ZHANG Y, NG B P. MUSIC-Like DOA estimation with- out estimating the number of sources[ J ]. IEEE Transac- tion on signal processing, 2010, 58(3) : 1668-1676.
  • 6CHUNG P J. A max-search approach for DOA estimation with unknown number of signals [ J ]. IEEE Journal of Se- lected Topics in Signal Processing,2010,4(3) :612-619.
  • 7田彪,黄海宁,叶青华,李宇.多子阵高分辨实时波达估计算法研究[J].仪器仪表学报,2010,31(3):513-518. 被引量:10
  • 8郭伟,潘仲明,王跃科.一种基于载波相位的声呐阵列波达方向估计算法[J].仪器仪表学报,2010,31(7):1472-1477. 被引量:9
  • 9SMITH D, SINGH S. Approaches to multi-sensor data fusion in target tracking : A survey [ J ]. IEEE Transac- tions on Knowledge and Data Engineering, 2006, 18 (12) : 1696-1710.
  • 10OLAMA M M, DJOUADI S M. Position and velocity tracking in mobile networks using particle and kalmanfiltering with comparison[J]. IEEE Transactions on Ve- hicular Technology,2008, 57 (2) : 1001-1010.

二级参考文献30

共引文献20

同被引文献35

  • 1王兰云,赵拥军.相控阵雷达多目标跟踪原理及数据关联算法研究[J].电光与控制,2007,14(1):30-33. 被引量:8
  • 2张贤达.现代信号处理[M].2版.北京:清华大学出版社,2008.
  • 3KNAPP C,CATER G.The generalized correlation method for estimation of time delay[J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1976,24(4):320-327.
  • 4LAN J, LI X R, JILKOV V P, et al. Second-order markov chain based multiple-model algorithm for ma- neuvering target tracking [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49 ( 1 ) : 3-19.
  • 5JING L, VADAKKEPAT P. Interacting MCMC particle filter for tracking maneuvering target [ J ]. Digital Signal Processing, 2010, 20(2): 561-574.
  • 6XU B, XU H, ZHU J. Ant clustering PHD filter for muhiple-target tracking [ J ]. Applied Soft Computing, 2011, 11 (1) : 1074-1086.
  • 7BILIK I, TABRIKIAN J. Maneuvering target tracking in the presence of glint using the nonlinear Gaussian mix- ture Kalman filter[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46( 1 ) : 246-262.
  • 8STEFANO F A F, FULVIO G, ANTONIO G, et al. Least squares estimation and Cram6r-Rao type lower bounds for relative sensor registration process EJ~. IEEE Transactions on Signal Processing, 2011, 59(3) : 1075-1087.
  • 9SHI Z,YUE P,WANG X ZH. Research on adaptive kalman filter algnrithm based on fuzzy neural network[-C3. 2010 IEEE International Conference on Information and Automation, 2010.
  • 10李广伟,刘云鹏,尹健,史泽林.基于改进李群结构的特征协方差目标跟踪[J].仪器仪表学报,2010,31(1):111-116. 被引量:9

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部