期刊文献+

基于听觉特性和过零点间隔的多声源定位算法 被引量:5

Multiple sound source localization based on auditory character and zero-crossing intervals
下载PDF
导出
摘要 针对目前声源定位技术的研究现状,研究了人耳听觉系统的生理学和心理学特性,建立了基于人耳听觉系统的多声源定位模型;通过研究信号部分频率成分间的过零点时间间隔与原信号保持一致的特性,提出了用上升过零点模拟听神经的发放行为,从而引入了根据两通道间过零点时间间隔统计特征确定两耳时延的算法,并给出了噪声对时延结果影响的判定方法;相比互相关算法,该算法的计算量较小而抗噪声能力更强,声源的增多不会明显降低定位效果;通过与常用的互相关时延算法对比,仿真实验验证了该算法在较低信噪比情况下,依然可以对多个声源取得较好的定位效果。 Aiming at the current technical status of sound source localization and separation, we have studied the physiological and psychological characteristics of human auditory system, and then established a multiple sound source localization model. Through studying the statistical character of time intervals between the zero-crossings of the signals, we find that partial frequency components of the signal and the original signal have the same characteris- tics, then, propose using the upward-going zero-crossing to simulate the fire of sound nerves, and introduce a time delay algorithm based on zero-crossing time interval between channels. Compared with cross-correlation algorithm, this algorithm has less calculation tasks, stronger anti-noise ability; and increasing the number of sound sources will not significantly reduce the accuracy of multi-source localization. Simulation experiment proves that the algorithm can have a good performance in the localization of multiple sound sources under low SNR( signal to noise ratio).
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第6期1224-1233,共10页 Chinese Journal of Scientific Instrument
关键词 声源定位 时间延迟 过零点 听觉特性 sound source localization time delay zero-crossing auditory character
  • 相关文献

参考文献15

二级参考文献92

  • 1胡静涛,郭前进.基于线调频小波变换的旋转机械故障诊断[J].仪器仪表学报,2006,27(z1):395-398. 被引量:6
  • 2吕琛,王桂增,邱庆刚.基于声信号小波包分析的故障诊断[J].自动化学报,2004,30(4):554-559. 被引量:15
  • 3居太亮,彭启琮,邵怀宗.基于麦克风阵列的近场声源定位子阵算法研究[J].电子测量与仪器学报,2006,20(5):50-55. 被引量:12
  • 4JING L. Feature extraction of machine sound using wavelet and its application in fault diagnosis [ J ]. NDT & E International, 2001,34( 1 ) :25-30.
  • 5BENKO U, PETROVI J, JURII A. An approach to fault diagnosis of vacuum cleaner motors based on sound analysis [ J ]. Mechanical Systems and Signal Processing, 2005,19( 2 ) :427-445.
  • 6SHIBATA K, TAKAHASHI A, SHIRAI T. Fault diagnosis of rotating machinery through visualization of sound signals[J]. Mechanical Systems and Signal Processing, 2000,14 ( 2 ) : 229 -241.
  • 7WIDODO A, YANG B S. Support vector machine in machine condition monitoring and fault diagnosis [ J ]. Mechanical Systems and Signal Processing, 2007,21 (6) : 2560-2574.
  • 8VAPNIK V. The nature of statistical learning theory [ M ]. New York : Springer-Verlag, 2000.
  • 9ZWICKER E, FADTL H. Psychoacoustics facts and models [ M ]. New York : Springer-Verlag, 1999.
  • 10HERMANSK H. Perceptual linear predictive (PLP) analysis of speech [ C ]. J. Acoust. Soc. Am. 1990,87 (4) :1738-1751.

共引文献214

同被引文献64

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部