期刊文献+

温度梯度溶液生长法制备x=0.2的Cd_(1-x)Zn_xTe晶体及性能研究 被引量:1

Growth and characterization of Cd_(1-x)Zn_xTe(x=0.2) crystals by temperature gradient solution growth
下载PDF
导出
摘要 利用温度梯度溶液生长法(TGSG)在较低生长温度下制备了掺Al和掺In的x=0.2的Cd1-xZnxTe晶体,晶体起始生长温度约为1223K,温度梯度为20~30K/cm,坩埚的下降速度为1mm/h。采用红外显微镜、傅里叶红外光谱仪、扫描电镜能谱仪(SEM/EDS)和I-V测试分别研究了晶体中的Te夹杂相、红外透过率、Zn组分分布和电阻率。结果显示CdZnTe晶锭初始生长区、稳定生长区的Te夹杂相密度分别为8.3×103、9.2×103/cm-2,比垂直布里奇曼法生长的晶体低约1个数量级,红外透过率分别为61%、60%。Al掺杂CdZnTe晶体的电阻率为1.05×106Ω.cm,而In掺杂CdZnTe晶体的电阻率为7.85×109Ω.cm。晶锭初始生长区和稳定生长区的Zn组分径向分布均匀。 Cd1-xZnxTe(x=0. 2) bulk crystals with the AI dopant and In dopant had been growth by the tempera- ture gradient solution growth (TGSG) with the lower starting growth temperature of 1223K, temperature gradi- ent of 20-30 K/cm and growth rate of lmm/h. IR microscopy,FTIR transmission spectroscopy, SEM/EDS and I-V characteristics were adopted to analyze the Te inclusions,IR transmittance, Zn component distribution and resistivity of the crystals,respectively. The results showed that the density of Te inclusions in the first-to-freeze and stable growth of the ingots were 8.3 × 10^3 , 9.2 × 10^3/cm^-2 respectively,which were about 1 magnitude order lower than that of ingots grown by the vertical Bridgman growth, while the corresponding IR transmittance of the ingots were 61% ,60%. The resistivity of the A1 doped CdZnTe crystal was 1.05× 10^6 Ω·cm, while the re- sistivity of the In doped CdZnTe was 7.85 × 10^9 Ω·cm. In addition, the radial distribution of the Zn component was uniform in the first-to-freeze and stable Rrowth of the ingots.
出处 《功能材料》 EI CAS CSCD 北大核心 2012年第10期1277-1280,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(10675080 50902091) 上海市重点学科资助项目(S30107)
关键词 碲锌镉 温度梯度溶液生长法 红外透过率 Te夹杂 CdZnTe TGSG IR transmission Te inclusion
  • 相关文献

参考文献12

  • 1Yu P F, He Y H,Wang T,et al. [J]. J Cryst Growth, 2011,324 .- 22-25.
  • 2Shin H Y,Sun C Y. [J] J Cryst Growth, 1998,186 : 67- 78.
  • 3Limousin O. [J] Nucl Instrument Methods Phys Res A, 2003,504:24-37.
  • 4Czock K H, Arlt R. [J]. Nucl Instrument Methods Phys Res A,2001,458:175-182.
  • 5Zhang N,Yeckel A,Burger A,et al. [J] J Cryst Growth, 2011,325..10-19.
  • 6Eisen Y, Shor A. [J]. J Cryst Growth, 1998, 184-185: 1302-1312.
  • 7Schieber M, Schlesinger T E, James R B. [J]. J Cryst Growth, 2002,237-239 : 2082-2092.
  • 8Bolotnikov A E,Camarda G S,Carini G A,et al. [J]. Nucl Instrument Methods Phys Res A, 2007,517 .. 687-698.
  • 9Yang G, Bolotnikov A E, Cui Y, et al.[J]. J Cryst Growth,2008,311 : 99-102.
  • 10Uen W Y,Chou S Y, Shin H Y,et al.[J]. Materials Sci- ence and Engineering,2004 ,B106 : 27-32.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部