期刊文献+

叠层复合材料电磁场效应数值模拟

Numerical simulation for electromagnetic field effect of laminated composites
下载PDF
导出
摘要 为了解决现有数值模拟方法不能计算叠层复合材料分层吸收率、分层反射率及多角度反射率的问题,借助可以表征能量流动方向和大小的Poynting矢量,按研究项目要求建立了由碳纤维、石墨颗粒和聚苯乙烯树脂组成的叠层复合材料微结构有限元模型,通过程序设计结合有限元数值模拟的方法实现了电磁场效应的计算。结果表明,所设计的叠层复合材料在宽频范围内具有稳定的电磁场效应。在工作频率2~18GHz范围内,该结构吸收率高达50%以上,而垂直反射率只有10%左右。斜反射率随反射角度增大而减小。迎波第一层的吸收率和反射率均大于第二层。数值模拟结果满足研究项目要求。研究方法对任意叠层材料微结构均具有适用性。 In order to solve the problem that the present research method of numerical simulation can not calcu- late the layered absorptivity, layered reflectivity and the multi angle reflectivity of laminated composites, the fi- nite element model of laminated composites microstructure was therefore established, which was composed of carbon fibers, graphite particles and polystyrene meeting the requirement of research program, making use of Poynting vector which characterizes the direction and size of energy flow. By combining the program design and finite element method (FEM), the calculation of electromagnetic field effect were thus realized. Research results show that the designed laminated composites have a stable electromagnetic field effect in a wide frequency range: in the work frequency ranging from 2GHz to 18GHz, the absorptivity of the laminated composites could reach as high as 50%, while the normal reflectivity reaches only 10%. The oblique reflectivity decreases as the reflection angle increases. The absorptivity as well as the reflectivity of the first layer is much larger than the second layer. The results of numerical simulation meet the requirements set by the research program. The re- search method is applicable for any laminated composites microstructures.
出处 《功能材料》 EI CAS CSCD 北大核心 2012年第10期1299-1302,共4页 Journal of Functional Materials
基金 国家自然科学基金资助项目(50271016,50571042)
关键词 复合材料 电磁场效应 数值模拟 材料微结构 Poynting矢量 composites electromagnetic field effect numerical simulation material microstructure Poynting vec- tor
  • 相关文献

参考文献14

  • 1Zhang H T, Zhang J S, Zhang H Y. [J]. Computational Materials Science, 2007, 38(4) .. 857 -864.
  • 2Nicolaescu I. [J]. Journal of Optoelectronics and Ad- vanced Materials, 2006,8 (1) : 333-338.
  • 3Fan H L, Yang W, Chao Z M. [J]. Composites Science and Technology, 2007, 67(15) :3472-3479.
  • 4Chin W D, Lee D G. [J]. Composite Structures, 2007, 77(4): 457 465.
  • 5CherukuDR, GottapuSR, PappuVYJ, etal. [J]. J Electromagnetic Analysis and Applications, 2010,2 ( 5 ) 318-323.
  • 6Zou T C, Shi C S, Zhao N Q. [J]. Journal of MaterialsScience, 2007,42(13) .. 4870-4876.
  • 7Wu X W,Feng Y J,Liu Y K, et al. [J]. Journal of the Chinese Ceramic Society, 2009,37 (2) : 311-316.
  • 8Kim J B, Kim C G. [J]. Advanced Materials Research, 2010, (123-125) :951-954.
  • 9Kim H T, Liu K, Lee Y T, et al. [J]. Electronic Com- ponents and Technology Conference, 2011,61 (3) .. 1717- 1722.
  • 10Kim J W, Kim S S. [J]. Materials and Design, 2010, 31 (3) ..1547-1552.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部