期刊文献+

7022铝合金FSJ连接区减薄机理分析 被引量:3

Analysis on the reduction mechanism of 7022 aluminum alloy in the FSJ jointing area
下载PDF
导出
摘要 针对10mm厚的7022铝合金进行了FSJ连接实验,并利用工具显微镜对连接区横截面形貌进行分析研究。结果表明,前进侧的连接区塑化金属在搅拌针表面的挤压作用下瞬时针方向流入空腔,后进侧的连接区塑化金属在搅拌针表面的挤压作用下逆时针方向流入空腔。轴肩摩擦软化的塑化金属在搅拌头高速旋转下,形成涡旋流动并在轴肩下压力作用下流入空腔;随着搅拌针的高速旋转,空腔内的塑化金属向四周挤压,致使母材发生塑性变形,同时将底部部分塑化金属挤压到母材上表面,且在轴肩下压力作用下,挤压到轴肩外围形成"飞边";由于涡旋流动,致使连接区中间部位的金属层下凹,形成连接区表面中间部位凹陷。造成了连接区"减薄效应"现象发生。"填充式间接挤压-涡旋流动"模型能准确表达连接区金属塑性流动和减薄形成过程。 Experimental study was carried out on the FSJ of 10mm thick 7022 aluminum alloy. The cross-section of jointing area was analyzed by the tool microscope. The results show that the plastic metal of seam in the ad- vancing side along the surface of the stirring pin was squeezed into the cavity clockwise and the plastic metal of seam in the retreating side along the surface of the stirring pin was squeezed into the cavity counterclockwise. In high rotation speed of the stirring head, the plastic metal soften by shaft shoulder friction stirring was generated vortex flow and squeezed into the cavity under the pressure of shaft shoulder. With the high speed of stirring pin, the plastic metal in the cavity squeezes the base metal to the surrounding, resulting in plastic deformation of base metal. At the same time, the part of plastic metal of the bottom was squeezed to the surface of base metal, which was squeezed to the surrounding and formed the "Flash" under the action of the pressure of shaft shoul- der. As the vortex flow, the metal layer of the middle was concave, and the middle position of the surface of seam was sunken. "Reduction effect" phenomenon was occurred in the jointing area. The model of "filling indi- rect squeeze - vortex flow" can accurately express the flow pattern of the plastic metal of jointing area and reduc- tion formed process.
出处 《功能材料》 EI CAS CSCD 北大核心 2012年第10期1327-1331,共5页 Journal of Functional Materials
基金 国家高技术研究发展计划(863计划)资助项目(SQ2008AA10XK1468859) 国家自然科学基金资助项目(51175255) 黄山学院人才启动基金资助项目(2012xkjq001)
关键词 FSJ 减薄效应 7022铝合金 塑性流动 FSJ reduction effect 7022 aluminum alloy plastic flow of metal
  • 相关文献

参考文献2

二级参考文献21

  • 1赵衍华,林三宝,申家杰,吴林.2014铝合金搅拌摩擦焊接头的微观组织及力学性能[J].航空材料学报,2006,26(1):67-70. 被引量:23
  • 2周鹏展,钟掘,贺地求.7A52铝合金厚板搅拌摩擦焊[J].中国有色金属学报,2006,16(6):964-969. 被引量:44
  • 3魏世同,郝传勇.01420铝锂合金的搅拌摩擦焊接[J].航空材料学报,2006,26(6):21-25. 被引量:8
  • 4Chen Kang-hua,Huang Lan-ping.Strengthening-toughening of 7××× series high strength aluminum alloys by heat treatment[J].Transactions of Nonferrous Metals Society China,2003,13(3):484-494.
  • 5Kostka A,Coelho R S,Santos J dos,et al.Microstructure of friction stir welding of aluminium alloy to magnesium alloy[J].Scripta Materialia,2009,60(2):953-956.
  • 6Liechty B C,Webb B W.Modeling the frictional boundary condition in friction stir welding[J].International Journal of Machine Tools & Manufacture,2008,48(4):1474-1485.
  • 7Jones M J,Heurtier P,Desrayaud C,et al.Correlation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy[J].Scripta Materialia,2005,52(8):693-697.
  • 8Kim D,Badarinarayan H,Kim J H,et al.Numerical simulation of friction stir butt welding process for AA5083-H18 sheets[J].European Journal of Mechanics,A/Solids,2009,33(1):1-12.
  • 9Cavalierea P,Squillaceb A,Panellaa F.Effect of welding parameters on mechanical and microstructural properties of AA6082 joints produced by friction stir welding[J].Journal of Materials Processing Technology,2008,200(2):364-372.
  • 10Cavaliere P,Squillace A.High temperature deformation of friction stir processed 7075 aluminium alloy[J].Materials Characterization,2005,55(2):136-142.

共引文献18

同被引文献38

  • 1邓学峰,张辉,陈振华.耐热铝合金(FVS0812)板材温拉伸本构方程[J].塑性工程学报,2006,13(3):83-87. 被引量:22
  • 2Khorrami M S, Kazeminezhad M, Kokabi A H. Mechanical properties of severely plastic deformed aluminum sheets joined by friction stir welding [J]. Materials Science and Engineering A,2012,543:243-248.
  • 3Yan D Y, Wu A P, Slivanus J, et al. Predicting residual distortion of aluminum alloy stiffened sheet after friction stir welding by numerical simulation [J]. Materials and Design, 2011,32 : 2284-2291.
  • 4Palanivel P, Mathews P K, Murugan N, et al. Effect of tool rotational speed and pin profile on microstructure and tensile strength of dissimilar friction stir welded AA5083-H111 and AA6351-T6 aluminum alloys [J]. Materials and Design,2012, 40:7-16.
  • 5Rajakumar S, Balasubramanian V. Establishing relationships between mechanical properties of aluminum alloys and optimized friction stir welding process parameters[J]. Materials and Design,2012,40 : 17-35.
  • 6Metz D F, Barkey M E. Fatigue behavior of friction plug welds in 2195 AI-Li alloy[J]. International Journal of Fatigue, 2012,43 : 178-187.
  • 7Guo J, Gougeon P, Chert X G. Microstructure evolution and mechanical properties of dissimilar friction stir welded joints between AAII00-B4C MMC and AA6063 alloy[J]. Materials Science and Engineering A,2012,553:149-156.
  • 8Xue P, Ni D R, Wang D, et al. Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar AI-Cu joints[J]. Materials Science and Engineer- ing A, 2011,528:4683-4689.
  • 9Zuo D W,Wang H F,Miao H,et al.Analysis on millingdeformation of 7022 aluminum alloy blank jointed by FSJ[J].Key Engineering Materials,2012,499:27-32.
  • 10Garcfa-Allende P B,Mirapeix J,Conde O M,et al.Spectralprocessing technique based on feature selection and artificialneural networks for arc-welding quality monitoring [J].NDT&E International,2009,42:56-63.

引证文献3

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部