期刊文献+

约束改进的ICP点云配准方法 被引量:16

ICP method improved by constraints for point cloud registration
下载PDF
导出
摘要 提高配准速度和精度是点云配准研究的重点。提出一种距离约束改进的迭代邻近点算法,针对邻近点法中找到的配准点,采用最近原则排除含相同点的点对;使用配准点重心作为参考点,结合点对距离约束排除误配准点对后进行点云配准;与使用点云重心作为参考点的方法和迭代邻近点算法进行了比较。实验结果表明,在配准速度和精度方面,提出的算法都有了提高,实现了点云的快速、准确配准。 To improve the speed and accuracy of point cloud registration is the research emphasis. An iteration close point algorithm improved by distance constraint is proposed. With the registration point found by using close point criterion, the nearest principle is used to remove the point pairs which have the same points. Since the center of registration point is regarded as a reference point, after the wrong point pairs are removed by using point pairs distance constraint, point cloud registration is carried out. This improved algorithm is compared with another method which regards the center of point cloud as a reference point and uses iteration close point principle. Experiment results show that the speed and accuracy of registration for the algorithm are improved.
出处 《计算机工程与应用》 CSCD 2012年第18期197-200,共4页 Computer Engineering and Applications
基金 河南省基础与前沿技术研究计划项目(No.102300410113) 河南省重点科技攻关项目(No.092102210293)
关键词 点云配准 迭代邻近点算法 点对约束 距离约束 参考点 point cloud registration iterative closest point algorithm point pair constraint distance constraint reference point
  • 相关文献

参考文献11

  • 1Besl P J, Mckay N D.A method for registration of 3D shapes[J].IEEE Transactions on Pattem Analysis and Ma- chine Intelligence, 1992,14(2) :239-256.
  • 2Chen Y, Medioni G.Object modeling by registration of multiple range images[C]//The 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 1991:2724-2729.
  • 3解则晓,徐尚.三维点云数据拼接中ICP及其改进算法综述[J].中国海洋大学学报(自然科学版),2010,40(1):99-103. 被引量:59
  • 4Batlle E,Matabosch C,Salvi J.Summarizing image/sur- face registration for 6DOF robot/camera pose estima- tion[J].Pattern Recognition and Image Analysis, 2007, 4478: 105-111.
  • 5Du Shaoyi,Zheng Naning,Ying Shihui,et al.Affine itera- rive closest point algorithm for point set registration[J]. Pattern Recognition Letters, 2010,31 (9) ~ 791-799.
  • 6Gerogiannis D,Nikou C, Likas A.The mixtures of stu- dent's t-distributions as a robust framework for rigid registration[J].Image and Vision Computation, 2009, 27: 1285-1294.
  • 7Jiang Jun, Cheng Jun, Chen Xinglin.Registration for 3-D point cloud using angular invariant feature[J].Neuro Com- puting, 2009,72 (16/18) : 3839-3844.
  • 8Oztireli A C, Basdogan C.A new feature-based method for robust and efficient rigid-body registration of over- lapping point clouds[J].The Visual Computer,2008,24: 679-688.
  • 9Liu Yonghai.Constraints for closest point finding[J].Pat- tern Recognition Letters, 2008,29 : 841-851.
  • 10Zhang Zhengyou.Iterative point matching for registra- tion of free form curves and surfaces[J].Computer Vi- sion, 1994, 13(2) : 119-152.

二级参考文献45

  • 1罗先波,钟约先,李仁举.三维扫描系统中的数据配准技术[J].清华大学学报(自然科学版),2004,44(8):1104-1106. 被引量:99
  • 2解则晓,张成国,张国雄.线结构光测量数据的自动拼合方法[J].中国机械工程,2005,16(9):775-778. 被引量:18
  • 3朱延娟,周来水,张丽艳.散乱点云数据配准算法[J].计算机辅助设计与图形学学报,2006,18(4):475-481. 被引量:97
  • 4Salvi J, Mataboseh C, Foil D, et al. A review of recent range image registration methods With accuracy evaluation [J]. Image and Vision Computing, 2007, 25(5):578-596.
  • 5Besl P J, Mckay N D. A method for registration of 3 d shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligenee, 1992, 14(2): 289-256.
  • 6Rusinkiewicz S, Levoy M. Efficient variants of the ICP algorithm [C]. Quebec City, Canada: Proceedings of the 3^rd International Conference on 3D Digital Imaging and Modeling, 2001: 145-152.
  • 7Turk G, Levoy M. Zippered polygon meshes from range images [C]. Orlando, America:Proceedings of the 21^st Annual Conference on Computer Graphics and Interactive Techniques, 1996: 311-318.
  • 8Masuda T. Generation of geometric model by registration and integration of multiple range images [C]. Quebec City, Canada: Proceedings of the 3^rd International Conference on 3D Digital Imaging and Modeling, 2001: 254-261.
  • 9Masuda T, Yokoya N. A robust method for registration and segmentation of multiple range images [J]. Computer Vision and Image Understanding, 1995, 61(3): 295-307.
  • 10Gelfand N, Ikemoto L, Rusinkiewicz S, et al. Geometrically stable sampling for the ICP algorithm [C]. Banff, Canada: Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling, 2003: 260-267.

共引文献58

同被引文献124

引证文献16

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部