期刊文献+

图像重建中的非常稀疏循环矩阵 被引量:3

Very sparse circulant matrices in image reconstruction
下载PDF
导出
摘要 测量矩阵是压缩传感理论的关键要素之一。针对目前大部分工作中所用的高斯等随机测量矩阵独立随机变元过多,不利于物理实现的问题,引入稀疏带状和稀疏列的概念,形成稀疏带状随机、托普利兹和循环矩阵以及稀疏列随机、循环矩阵,随机变元个数减少约三分之一。采用通用的模拟实验方法,验证此类稀疏矩阵对于真实图像的重建效果及对0-1信号的成功重建概率均与随机高斯矩阵相当。 Measurement matrix is one of the key components in compressed sensing. Most work so far focuses on Gaussian or Bernoulli random measurements. However, such matrices are often diffcnlt and costly to implement in hardware realizations because of too many independent random variables. This paper introduces sparse banded and column measurements matrix for reconstructing signals that independent random variables are reduced more than one-third. Simulation experiments show that the reconstruction effect of true image and the probability of 0-1 signal of the sparse matrix are the same as those of random Gaussian matrix.
出处 《计算机工程与应用》 CSCD 2012年第18期206-211,共6页 Computer Engineering and Applications
基金 国家科技重大专项(No.2009ZX-03006-001-02) 安徽省自然科学基金(No.1208085QF114) 安徽高校省级自然科学研究项目(No.KJ2011B131) 安徽省高校省级优秀青年人才基金项目(No.2011SQRL126)
关键词 压缩传感 托普利兹矩阵 循环矩阵 稀疏带状矩阵 稀疏列矩阵 compressive sensing Toeplitz matrix circulant matrix sparse banded matrix sparse column matrix
  • 相关文献

参考文献11

  • 1Donoho D.Compressed sensing[J].IEEE Trans on Inform Theory,2006,52(4) : 1289-1306.
  • 2Cand~s E, Romberg J, Tao T.Robust uncertainty principles: exact signal reconstruction from highly incomplete fre- quency information[J].IEEE Trans on Inform Theory, 2006,52(2) :489-509.
  • 3Candes E, Tao T.Error correction via linear programming[C]// 46th Annual Proc of IEEE Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania, USA, 2005:295-308.
  • 4Tropp J, Gilbert A.Signal recovery from random mea- surements via orthogonal matching pursuit[J].IEEE Trans on Inform Theory,2007,53(12):4655-4666.
  • 5Needell D, Tropp J A.CoSaMP: iterative signal recovery from incomplete and inaccurate samples[J].Appl and Comp Harm Anal, 2009,26 (3) : 301-321.
  • 6Dai W,Milenkovic O.Subspace pursu!t for compressive sensing signal reconstruction[J].IEEE Trans on Inform Theory, 2009,55 (5) : 2230-2249.
  • 7Candes E J, Tao T.Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Trans on Inform Theory,2006,52(12) :5406-5425.
  • 8Bajwa W U, Haupt J D, Raz G M, et al.Toeplitz-structured compressed sensing matrices[C]//Proceedings of the 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, 2007: 294-298.
  • 9Ratthut H.Circulant and Toeplitz matrices in compressed sensing[C]//Proc SPARS' 09, Saint Malo, 2009.
  • 10DeVore ILDeterministic constructions of compressed sensing matrices[J].Journal of Complexity, 2007,23 : 918-925.

二级参考文献6

  • 1Cand&E J,Romberg J,Tao T.Signal recovery from incomplete and inaccurate measurements[J].Comm Pure Appl Math,2005,59(8):1207-1223.
  • 2Donoho D L,Stark P B.Uncertainty principles and signal recovery[J].SIAM J Applied Math,1989,49:906-931.
  • 3Cand'es E,Romberg J.Quantitative robust uncertainty principles and optimally sparse decompositions[J].Foundations of Comput Math,2006.
  • 4Cand'es E,Tao T.Near optimal signal recovery from random projections and universal encoding strategies[J].IEEE Trans Inform Theory,2004.
  • 5Cand'es E J,Tao T.Decoding by linear programming[J].IEEE Trans Inform Theory,2005,51(12):4203-4215.
  • 6Donoho D.Compressed sensing[J].IEEE Trans Inf Theory,2006,52(4):1289-1306.

共引文献26

同被引文献19

  • 1颜学龙,余君.二维离散小波变换的FPGA实现[J].电视技术,2007,31(4):19-21. 被引量:4
  • 2庄瓦金.体上矩阵引论导引[M].北京:科学出版社,2006.
  • 3Mohammed Bahoura,Hassan Ezzaidi.FPGA-Implementation of Discrete Wavelet Transform with Application to Signal Denoising[J].Circuits Systems and Signal Processing.2012(3)
  • 4Baraniuk,Richard G.Compressive sensing[].IEEE Signal Processing Magazine.2007
  • 5Candes, Emmanuel J.,Tao, Terence.Decoding by linear programming[].IEEE Transactions on Information Theory.2005
  • 6VChandar.A Negative Result Concerning Explicit Matrices with the Restricted Isometry Oroperty[OL]. http://dsp.rice.edu/sites/dsp.rice.edu/files/cs/venkat_CS.pdf . 2013
  • 7Georgiou S D,Lappas E.Self-dual codes from circulant matrices[J].Des Codes Cryptogr,2012,64:129-141.
  • 8Gupta K C,Ray I G.Cryptographically significant MDS matrices based on circulant and circulant- Iike matrices for lightweight applications[J].Cryptogr.Commun.,2015,7:257-287.
  • 9Song R X,Li C H,Wang Y N.Shape feature description based on log-polar coordinates and symmetric circulant matrix[J].Science in China:Math.,2014,44(7):815-822.
  • 10黄敬频,于艳.四元数矩阵方程的复转化及保结构算法[J].纯粹数学与应用数学,2008,24(2):321-326. 被引量:8

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部