摘要
测量矩阵是压缩传感理论的关键要素之一。针对目前大部分工作中所用的高斯等随机测量矩阵独立随机变元过多,不利于物理实现的问题,引入稀疏带状和稀疏列的概念,形成稀疏带状随机、托普利兹和循环矩阵以及稀疏列随机、循环矩阵,随机变元个数减少约三分之一。采用通用的模拟实验方法,验证此类稀疏矩阵对于真实图像的重建效果及对0-1信号的成功重建概率均与随机高斯矩阵相当。
Measurement matrix is one of the key components in compressed sensing. Most work so far focuses on Gaussian or Bernoulli random measurements. However, such matrices are often diffcnlt and costly to implement in hardware realizations because of too many independent random variables. This paper introduces sparse banded and column measurements matrix for reconstructing signals that independent random variables are reduced more than one-third. Simulation experiments show that the reconstruction effect of true image and the probability of 0-1 signal of the sparse matrix are the same as those of random Gaussian matrix.
出处
《计算机工程与应用》
CSCD
2012年第18期206-211,共6页
Computer Engineering and Applications
基金
国家科技重大专项(No.2009ZX-03006-001-02)
安徽省自然科学基金(No.1208085QF114)
安徽高校省级自然科学研究项目(No.KJ2011B131)
安徽省高校省级优秀青年人才基金项目(No.2011SQRL126)
关键词
压缩传感
托普利兹矩阵
循环矩阵
稀疏带状矩阵
稀疏列矩阵
compressive sensing
Toeplitz matrix
circulant matrix
sparse banded matrix
sparse column matrix