期刊文献+

Ⅲ-Ⅴ族多面体团簇的稳定性规律

Stability Rule of Ⅲ-Ⅴ Polyhedral Clusters
原文传递
导出
摘要 本文对Ⅲ-Ⅴ族多面体团簇的几何结构与稳定性规律之间的关系进行了总结,内容包括富勒烯Cn团簇、CnXn(X=H,F)团簇、BnNn团簇、(HBNH)n团簇、Nn团簇及羰基硼(BCO)n团簇。对于富勒烯,最成熟的稳定性判据为独立五元环规则和五元环共边计数规则,它们都强调Cn团簇由五元环与六元环形成,且五元环应最大程度分离。但氢化或氟化后的CnXn(X=H,F)团簇有不同的稳定性规律,它们的稳定结构为五元环聚集的管状结构。BnNn团簇主要由四元环、六元环这样的偶数元环形成,避免了BB或NN键的出现。其最稳定结构中,四元环呈最大分离。最稳定的(HBNH)n团簇为四元环聚集的针状结构。N原子与CH单元为等电子体,但最稳定的Nn团簇由三元环、五元环与六元环形成,呈管状结构。BCO单元与CH也具有等瓣相似性,但最稳定的(BCO)n结构由三元环和六元环形成。对部分氢化或氟化富勒烯稳定性规律的探索,是Ⅲ-Ⅴ族团簇稳定性研究的下一个难点。 The recent investigation about the stability rules of Ⅲ-Ⅴ clusters is summarized.The Cn clusters,CnXn(X=H,F) clusters,BnNn clusters,(HBNH)n clusters,Nn clusters and carbonyl boron(BCO)n clusters are included in the present review.The most famous rules to determine the stable fullerene are isolated pentagon rule and pentagon adjacency penalty rule,which both state that pentagon in Cn cluster should be separated as far as possible.However,CnXn(X=H,F) clusters have tube-like structure,in which pentagons cluster together.The most stable BnNn clusters comprise four-,six-membered rings,in which,four-membered rings are separated as far as possible.The most stable(HBNH)n clusters,however,have needle-like structure.Although N atom is isoelectronic species of CH unit,the structure of most stable Nn clusters is remarkably different from that of CnHn.The most stable Nn clusters comprise three-,five-and six-membered rings,and have tube-like structure.The most stable(BCO)n clusters comprise three-and six-membered rings.The further investigations about the stability rule of Ⅲ-Ⅴ clusters will focus on the partially hydrogenated or fluorinated fullerenes.
出处 《化学进展》 SCIE CAS CSCD 北大核心 2012年第6期1008-1022,共15页 Progress in Chemistry
基金 国家自然科学基金项目(No.21031003) 山西省自然科学基金项目(No.2010011012-2)资助
关键词 多面体团簇 几何结构 稳定性 理论计算 富勒烯 ployhedral clusters geometry structure stability theoretical calculation fullerenes
  • 相关文献

参考文献128

  • 1Jones D E H. New Sci. , 1966, 32:245.
  • 2Jones D E H. The Inventions of Daedalus. San Francisco: W. H. Freeman, 1982. 118-119.
  • 3Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. Nature, 1985, 318:162-163.
  • 4Disch R L, Schulman J M. Chem. Phys. Lett. , 1986, 125: 465 -466.
  • 5Kroto H W, Allaf A W, Balm S P. Chem. Rev. , 1991, 91: 1213-1235.
  • 6Kratschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Nature, 1990, 347:354-358.
  • 7Liu Y, O'Brien S C, Zhang Q, Heath J R, Tittel F K, Curl R F, Kroto H W, Smalley R E. Chem. Phys. Lett. , 1986, 126: 215-217.
  • 8O'brien S C, Heath J R, Kroto H W, Curl R F, Smalley R E. Chem. Phys. Lett. , 1986, 312:99-102.
  • 9Diederieh F, Whetten R L. Accounts Chem. , Res. , 1992, 25: 119-126.
  • 10Kikuchl K, Nakahara N, Wakabayashi T, Honda M, Mataumiya H, Moriwaki T, Suzuki S, Shiromaru H, Saito K, Yamamuchi K, Ikemoto I, Achiba Y. Chem. Phys. Lett., 1992, 188: 177-180.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部