期刊文献+

PCA方法在蛋白质亚细胞定位中应用 被引量:1

Application of PCA method to predicting protein subcellular location
下载PDF
导出
摘要 蛋白质的亚细胞定位与其生物功能密切相关,蛋白质数据库急剧膨胀,迫切需要设计出功能强大的高吞吐量的算法来预测蛋白质的亚细胞位置.许多预测工具都是基于伪氨基酸组成构建而成,应用一种数据分析方法——主成分分析(PCA)法,确定能反映序列次序效应的最优λ值.首先让λ取最大以包含尽可能多的序列次序信息,然后利用主成分分析法提取关键主特征.实验结果表明此方法能解决确定最优λ值困难的问题,且性能优于已有的预测工具. The location of a protein subcellular is closely correlated with its biological function. With the rapid expansion of protein databases, it is very important to design a powerful high-throughput algorithm for predicting protein subcellular location. Many prediction tools have been designed based on the pseudo-amino acid composition, and a data analysis method, principal component analysis (PCA) method, is applied to determining in advance the optimal value of ~ which reflects sequence order effects. Firstly, the parameter 2 is set to the maximum to contain more sequence order information; then, PCA is employed to extract the essential features. Experimental results show that the proposed method solves the above problem, and its performance is better than those of other predictors.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2012年第3期426-430,共5页 Journal of Dalian University of Technology
关键词 蛋白质亚细胞定位 主成分分析 伪氨基酸组成 K近邻分类器 BP神经网络 protein subcellular location principal component analysis pseudo-amino acid composition k-NN classifier BP neural network
  • 相关文献

参考文献10

  • 1SHEN Hong-bin, CHOU Kuo-chen. Predicting protein subnuclear location with optimized evidence- theoretic K-nearest classifier and pseudo amino acid composition [J]. Biochemical and Biophysical Research Communications, 2005, 337(3) :752-756.
  • 2CHOU Kuo-chen. Prediction of protein cellular attributes using pseudo-amino acid composition [J]. Proteins: Strueture, Function, and Bioinformaties, 2001, 43(3):246-255.
  • 3DINGY S, ZHANG T L. Using Chou's pseudo amino acid composition to predict subeellular localization of apoptosis proteins., an approach with immune genetic algorithm-based ensemble classifier [J]. Pattern Recognition Letters, 2008, 29 (13) : 1887-1892.
  • 4ZENG Y, GUO Y, XIAO R, et al. Using the augmented Chou's pseudo amino acid composition for predicting protein submitochondria locations based on auto covariance approach [J]. Journal of TheoreticalBiology, 2009, 259(2):366-372.
  • 5VEENMAN C, REINDERS M. The nearest subclass classifier: A compromise between the nearest mean and nearest neighbor classifier [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(9) :1417-1429.
  • 6ZHOU Z H, WU J, TANG W. Ensembling neural networks: Many could be better than all [J]. Artificial Intelligence, 2002, 137(1-2) : 239-263.
  • 7CHEN Y L, LI Q Z. Prediction of the subcellular location of apoptosis proteins [J]. Journal of Theoretical Biology, 2007, 245(4) : 775-783.
  • 8GARDY J, LAIRD M, CHEN F, etal. PSORTb v. 2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis [J]. Bioinformaties, 2005, 21(5) :617-623.
  • 9CHOU Kuo-ehen, SHEN Hong-bin. Large-scale predictions of gram-negative bacterial protein subcellular locations [J]. Journal of Proteome Research, 2006, 5(12) :3420-3428.
  • 10MA J W, LIU W Q, GU H. Predicting protein subcellular locations for gram negative bacteria using neural networks ensemble [C] // Proceedings of CIBCBr2009. Piscataway:IEEE, 2009 : 114-120.

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部