1An R., Hou J., Characterizations of derivations on triangular rings: Additive maps derivable at idempotents, Linear Algebra Appl., 2009, 431: 1070-1080.
2Bresar M., Characterizing homomorphisms, multipliers and derivations in rings with idempotents, Proc. Roy. Soc. Edinburgh Sect., 2007, 137: 9-21.
3Hou J., Qi X., Additive maps derivable at some points on J-subspace lattice algebras, Linear Algebra Appl., 2008, 429: 1851-1863.
4Jing W., On Jordan all-derivable points of B(H), Linear Algebra Appl., 2009, 430: 941-946.
5Li J., Guo J., Characterizations of higher derivations and Jordan higher derivations on CSL algebras, Bull. Aust. Math. Soc., 2011, 83: 486-499.
6Lu F., Characterizations of derivations and Jordan derivations on Banach algebras, Linear Algebra Appl., 2009, 430: 2233-2239.
7Wei F., Xiao Z., Higher derivations of triangular algebras and its generalizations, Linear Algebra Appl., 2011, 435: 1034-1054.
8Zeng H., Zhu J., Jordan higher all-derivable points on nontrivial nest algebras, Linear Algebra Appl., 2011, 434: 463-474.
9Zhang X., An R., Hou J., Characterizations of higher derivations on CSL algebras, Epo. Math., 2013, 31: 392-404.
10Zhao J., Zhu J., Jordan higher all-derivable points in triangular algebras, Linear Algebra Appl., 2012, 436: 3072-3086.