期刊文献+

具有脉冲生育和脉冲收获的时滞SEI害虫治理模型的动力学分析 被引量:1

Dynamical Analysis of A Delayed Pest Management SEI System with Birth Pulse and Impulsive Harvesting at Different Moments
原文传递
导出
摘要 根据控制害虫的生物策略,考虑了一个不同时刻害虫具有脉冲生育和对害虫进行脉冲收获的时滞的SEI害虫治理模型.我们证明了系统所有的解都是一致有界的,同时获得了无病周期解是全局吸引的充分条件.进一步,得到了具有时滞的系统持续生存的充分条件.基于研究所得到的结果,作者提出了害虫治理的一些合理建议. According to biological strategy for pest control, a delayed pest management SEI model with birth pulse and impulsive harvesting at different moments has been taken into con- sideration. It has been proved that all solutions of the system are uniformly ultimately bounded and get the conditions of the globally attractive infection-free boundary periodic solution of the system, Further, sufficient condition with time delay for the permanence of the system has been obtained. Based on the results of the study, the authors put forward some reasonable suggestions for pest management.
出处 《生物数学学报》 CSCD 2012年第1期99-108,共10页 Journal of Biomathematics
基金 生物资源保护与利用湖北省重点实验室项目(PKLHB1107) 湖北省中青年人才项目(Q20101903)
关键词 SEI模型 时滞 脉冲生育 脉冲收获 绝灭和持续生存 SEI model Time delay Birth pulse Impulsive harvesting Extinction andpermanence
  • 相关文献

参考文献10

  • 1Gao S J,Chen L S,et al.Analysis of a delayed epidemic model with pulse vaccination and saturation incidence[J].Vaccine,2006,24(35-36):6037-6045.
  • 2Sun S,Chen L.Permanence and Complexity of the Eco-Epidemiological Model with Impulsive Perturbation [J].Int J Biomath,2008,1(2):121-132.
  • 3贾建文,乔梅红.一类具有脉冲效应和Ⅲ类功能反应的捕食系统分析[J].生物数学学报,2008,23(2):279-288. 被引量:8
  • 4Xiang Z Y,Song X Y.Dynamic analysis of a pest management SEI model with saturation incidence concerning impulsive control strategy[J].Nonlinear Anal.,2009,10(4):2335 2345.
  • 5Clack C.Mathematical Bioeconomics:The Optimal Management of Renewable Resources[M].New York: Wiley,1976.
  • 6Wang W.Global behavior of an SEIRS epidemic model with time delays[J].Appl Math Lett,2002,15(4): 423-428.
  • 7Gan Q,Xu R,Yang P.Bifurcation analysis for a predator-prey system with prey dispersal and time delay[J]. Int J Biomath,2008,1(2):209-224.
  • 8陈福来,文贤章.具有脉冲和时滞的Lotka-Volterra系统的正周期解的存在性和全局渐近稳定性[J].生物数学学报,2004,19(3):280-288. 被引量:13
  • 9Lakshmikantham V,Bainov D,Simeonov P.Theory of Impulsive Differential Equations[M].World Scientific, 1989.
  • 10Xiao Y N,Chen L S.Modelling and analysis of a predator-prey model with disease in the prey[J].Math Biosci,2001,171(1):59-82.

二级参考文献15

  • 1张玉娟,陈兰荪,孙丽华.一类具有脉冲效应的捕食者-食饵系统分析[J].大连理工大学学报,2004,44(5):769-774. 被引量:8
  • 2陈福来,文贤章.具有脉冲和时滞的Lotka-Volterra系统的正周期解的存在性和全局渐近稳定性[J].生物数学学报,2004,19(3):280-288. 被引量:13
  • 3谭德君.具有生育脉冲的Lotka-Volterra合作系统的正周期解的存在性[J].生物数学学报,2004,19(4):414-420. 被引量:7
  • 4[3]Teng Z, Yu Y. Some new results of nonautonous Lotka-Volterra competitive systems with delays[J]. J MathAnal Appl, 2000, 241(2):254-275.
  • 5[4]Fan M, Wang K. Periodicity in a delay Retio-Dependent Predator-Prey system[J]. J Math Anal Appl, 2001,262(1):1-11.
  • 6[5]Grains R E, Mawhin J L. Coincidence and nonlinear differential equations[M]. New York: Springer-Verlin,1977, 33-65.
  • 7[6]Bainov D D, Simeonov P S. Systems with impulse effect stability: theory and applications[M]. Horwood:Chicester, 1989, 121-125.
  • 8[1]LaKmeche A,Arino O.Bifurcation of non trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment[J].Dynamics of Continuous.Discrete and Impulsive Systems,2000,7(2):265-287.
  • 9[4]Yu juan Zhang,Bing Liu,Lansun Chen.Dynamical behavior of Volterra model with mutual interference concerning IPM[J].Mathematical Modelling and Numerical Analysis,2004,38(1):143-155.
  • 10[6]Onofrio A D'.Stability properties of pulse vaccination strategy in SEIR epidemic model[J].Mathematical Biosciences 2002,179 (1):57-72.

共引文献19

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部