期刊文献+

齿轮的振动分析和故障诊断方法 被引量:2

下载PDF
导出
摘要 针对电机行业齿轮运行中出现的问题,分析齿轮箱的振动和故障特征,研究齿轮的工作稳定性,探讨齿轮的故障诊断标准,分析齿轮在工作过程中的故障以及故障的诊断方法,为现代的工业设备控制提供解决方案。
作者 谭琛
出处 《轻工科技》 2012年第5期70-71,共2页 Light Industry Science and Technology
基金 2012年广西教育厅科研课题:加工中心电主轴振动故障诊断与检测
  • 相关文献

参考文献4

二级参考文献25

  • 1梁迪,赵春雨.双机传动机电耦合的动力学特性的仿真分析[J].机械设计与制造,2005(3):107-109. 被引量:1
  • 2胡继云,殷学纲,于翠萍.惯性往复振动设备的机电耦合模型和瞬态过程分析[J].应用数学和力学,2005,26(11):1359-1364. 被引量:6
  • 3吕浪,熊万里,黄红武,蔡海翔.超高速磨削SPWM电主轴系统机电耦合振动的瞬态特性研究[J].精密制造与自动化,2006(1):13-16. 被引量:4
  • 4Xiong Wanli, Lv Lang, Cai Haixiang, et al. A mechanical-electrical dynamical model of ultra-high speed wheel systems driven by motorized spindle[A]. The 7th International Conference on Frontiers of Design and Manufacturing[C]. Guangzhou, China, 2006: 411--414.
  • 5Lv Lang, Xiong Wanli, Huang Hongwu, et al. Effect of inverter modulation parameters on mechanical-electric coupling vibration of an ultra-high speed grinding system driven by a motorized spindle[A]. International Conference on Mechanical Engineering and Mechanics[C]. Wuxi, China, 2007:1 581--1 586.
  • 6Salomon C. Process for the Machining of Metals or Similarly Acting Materials When Being Worked by Cutting Tools[P]. German Patent: 5323594, 1931- 04.
  • 7Stephenson D J, Jin T, Corbett J. High efficiency deep grinding of a low alloy steel with plated CBN wheels[J]. Annals of the CIR P, 2002, 51 (1):94 --97.
  • 8Nakamura S, Kakino Y, Urano K, Yoneyama H. Analysis and a performance evaluation of the under race lubrication[J].Spindle at High Speed Rotation, Japan Soc. Prec. Eng. ,1994,60(10) :103-112.
  • 9Jiang Wanlu,Proc the 3rd Int Symposium on Fluid Power Transmission and Control(ISFP'99),1999年,215页
  • 10Mallat S,IEEE Trans Information Theory,1992年,38卷,2期,617页

共引文献44

同被引文献51

  • 1李辉,郑海起,潘宏侠.基于阶次跟踪和角域平均的齿轮裂纹故障诊断[J].中北大学学报(自然科学版),2007,28(1):27-31. 被引量:10
  • 2李辉,郑海起,唐力伟.阶次包络谱在轴承故障诊断中的应用[J].机械强度,2007,29(3):351-355. 被引量:9
  • 3陆人定.齿轮箱故障时域和频域综合诊断技术[J].机电工程技术,2007,36(6):17-19. 被引量:12
  • 4钟挺,陈本永.多自由度测量技术研究现状及发展趋势[J].激光杂志,2007,28(5):10-12. 被引量:6
  • 5Randall R B. New Method of Modeling Gear Faults [ J ]. ASMEJ of Mechanieal design, 1981, 104:259-267.
  • 6. P D McFadden and W J Wang. Early detection of gear failure by vibration analysis-ii. Interpretation of the time-frequency distribution using image processing techniques [ J ]. Mechanical Systems and Signal Processing, 1993,7 ( 3 ) :205-215.
  • 7C Sreepradha, A Krishna Kurnari, A Elaya Peru-real, et al. Neural network model for condition monitoring of wear and film thickness in a gearbox [ J ]. Neural Computing and Applications, 2013,8 ( 5 ) : 112-117.
  • 8Diehl, Edward J, Tang J, et al. Gear fault modeling and vibration response analysis[J]. ASME 2012 5th Annual Dynamic Systems and Control Conference Joint with the JSME 2012 llth Motion and Vibration Conference. America, 2012,3 (2) :709-718.
  • 9Krishnakumari Aharamuthu, Elaya Perumal Ayy-asamy. Application of discrete wavelet transform and Zhao-Atlas-Marks transforms in non stationary gear fault diagnosis [ J ]. Journal of Mechanical Science and Technology ,2013, 27 ( 3 ) : 641-647.
  • 10Bordoloi, DJ, Tiwari, Rajiv. Optimization of support vector machine based muhifault classification with evolutionary algorithms from time domain vibration data of gears [ J ]. Proceedings of the Institution of Mechanical Engineers, 2013,227( 11 ) :325-329.

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部