期刊文献+

粒子飞行速度对热障涂层结构和性能影响 被引量:2

Effect of Particles Velocity on Thermal Barrier Coatings Microstructures and Performance
下载PDF
导出
摘要 采用常规等离子喷涂(APS)和超音速等离子喷涂(SAPS)两种工艺制备了热障涂层,研究表明:两种等离子射流中粒子表面温度相近,SAPS工艺中粒子飞行速度达到430m/s,比APS工艺(200m/s)粒子飞行速度提高1倍。由于SAPS工艺中等离子射流速度高,熔融粒子在等离子射流中产生雾化形成尺寸较小粒子,伴随粒子撞击基体的速度提高,增加了熔融粒子撞击基体能量,在基体上形成厚度薄和飞溅少的"板条",加强了"板条"与基体或"板条"与"板条"间结合,消除了APS工艺制备的热障涂层中典型层状结构,使热障涂层结合强度和抗热震性能分别提高40%和1倍。 Thermal barrier coatings were prepared by conventional air plasma spray (APS) and supersonic air plasma spraying (SAPS). The particles temperature in SAPS plasma jet was closed to APS. The particles velocity was about 430m/s in SAPS plasma jet when the molten particles impacted to substrate, 2 times higher than that in APS stream (about 200m/s). A number of smaller particles were formed in SAPS jet as a result of extensive shearing by high velocity plasma jet. The impact energy of molten particles to substrate was increased with the particles velocity increase. So the adhesion strength of "splat" to substrate or "splat" with "splat" was enhanced, and the lamella structure that usually was observed in thermal barrier coatings sprayed by APS was eliminated. Thermal barrier coatings bond strength and thermal shock resistance of SAPS coatings was about 40% and 2 times higher than that deposited by APS process.
出处 《热喷涂技术》 2012年第1期47-52,共6页 Thermal Spray Technology
关键词 热障涂层 超音速等离子喷涂 微观结构 热震 Thermal barrier coatings Supersonic air plasma spraying (SAPS) Microstructure Thermal shock
  • 相关文献

参考文献12

  • 1Schulz U,Leyens C,Fritscher K. Some recent trends in research and technology of advanced thermal barrier coatings[J].Aerospace Science and Technology,2003.73-80.
  • 2郭洪波,宫声凯,徐惠彬.先进航空发动机热障涂层技术研究进展[J].中国材料进展,2009,28(9):18-26. 被引量:149
  • 3Meier S M,Gupta D K. The Evolution of Thermal Barrier Coatings in Gas Turbine Engine Applications[J].Journal of Engineering for Gas Turbines and Power,Transactions of the ASME,1994.250-257.
  • 4Maricocchi A,Bartz A,Wortman D. PVD TBC Experience on GE Aircraft Engines[J].Journal of Thermal Spray Technology,1997,(02):193-198.
  • 5Carlos G,Levi. Emerging materials and processes for thermal barrier systems[J].Current Opinion in Solid State and Materials Science,2004.77-91.
  • 6Padture N P,Gell M,Jordan E H. Thermal Barrier Coatings for Gas-Turbine Engine Applications[J].Science,2002.280-284.
  • 7Hongbo Guo,Seiji Kuroda,Hideyuki Murakami. Microstructures and Properties of Plasma-Sprayed Segmented Thermal Barrier Coatings[J].Journal of the American Ceramic Society,2006,(04):1432-1439.
  • 8Fauchais P,Vardelle M. Sensors in Spray Processes[J].Journal of Thermal Spray Technology,2010,(04):668-694.
  • 9吕艳红,吴子健,唐建新,张虎寅.纳米YSZ热障涂层隔热行为研究[J].中国表面工程,2006,19(1):24-27. 被引量:18
  • 10Fauchais P. Understanding plasma spraying[J].Journal of Physics D:Applied Physics,2004.86-108.

二级参考文献63

  • 1Matsumoto K, Itoh Y, Kameda T, EB-PVD Process and Thermal Properties of Hafnia-Based Thermal Barrier Coating [ J ]. Science and Technology of Advanced Materials, 2003(4) : 153 - 158.
  • 2Miller R A, Current Status of Thermal Barrier Coatings-an Overview[J]. SurCoat Technol, 1987, 30:1-11.
  • 3Miller R A, Thermal Barrier Coatings for Aircraft Engines : History and Directions[J]. J Thermal Spray Tech, 1997(6) : 35 -42.
  • 4Cao X Q, Vassen R, Stoever D, Ceramic Materials for Thermal Barrier Coatings [ J ]. Journal of the European Ceramic Society, 2004, 24: 1-10.
  • 5Goward G W. Protective Coating Systems for High-Temperature Gas Turbine Components[J~. Mat Sci Tech, 1986(2) : 194 -200.
  • 6Hecht R J, Goward G W, Elam R C. High Temperature NiCoCrAlY Coatings: United States, Patent No. 3928026[ P], 1975.
  • 7Zhu D M, Miller R A, Thermal Conductivity and Sintering Behavior of Advanced Thermal Barrier Coatings [ R ]. Ohio : Ohio Aerospace Institute, Brook Park, Ohio, 2002.
  • 8Zhu D M, Miller R A. Development of Advanced Low Conductivity Thermal Barrier Coatings [ J ]. International Journal of Applied Ceramic Technology, 2004 ( 1 ) : 86 - 94.
  • 9Almeida D S, Silva C, Nono M, Thermal Conductivity Investigation of Zirconia Co-Doped with Yttria and Niobia EB-PVD TBCs [J]. Materials Science and Engineering A, 2007, 443:60-65.
  • 10Matsumoto M, Yamaguchi N, Matsubara H, Low Thermal Conductivity and High Temperature Stability of ZrO2-Y2O3 -La2O3 Coatings Produced by Electron Beam PVD[ J]. Scripta Materialia, 2004, 50: 867-871.

共引文献165

同被引文献6

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部