期刊文献+

Bases of the Quantum Cluster Algebra of the Kronecker Quiver 被引量:1

Bases of the Quantum Cluster Algebra of the Kronecker Quiver
原文传递
导出
摘要 We construct bar-invariant Z[q ±1/2]-bases of the quantum cluster algebra of Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the corresponding cluster algebra. As a byproduct, we prove positivity of the elements in these bases. We construct bar-invariant Z[q ±1/2]-bases of the quantum cluster algebra of Kronecker quiver which are quantum analogues of the canonical basis, semicanonical basis and dual semicanonical basis of the corresponding cluster algebra. As a byproduct, we prove positivity of the elements in these bases.
作者 Ming DING Fan XU
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第6期1169-1178,共10页 数学学报(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities partially supported by the Ph.D. Programs Foundation of Ministry of Education of China (Grant No.200800030058)
关键词 Quantum cluster algebra Z[q ±1/2]-basis POSITIVITY Quantum cluster algebra,Z[q ±1/2]-basis, positivity
  • 相关文献

参考文献17

  • 1Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2), 497-529 (2002).
  • 2Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math., 154(1), 63-121 (2003).
  • 3Sherman, P., Zelevinsky, A.: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. Mosc. Math. J., 4(4), 947-974 (2004).
  • 4Caldero, P., Zelevinsky, A.: Laurent expansions in cluster algebras via quiver representations. Mosc. Math. J., 6(3), 411-429 (2006).
  • 5Caldero, P., Keller, B.: From triangulated categories to cluster algebras. Invent. Math., 172(1), 169-211 (2008).
  • 6Dupont, G.: Generic variables in acyclic cluster algebras. J. Pure and Appl. Alg., 215, 628-641 (2011).
  • 7Ding, M., Xu, F.: A Z-basis of cluster algebras for D4. Algebra Colloq., accepted.
  • 8Cerulli Irelli, G.: Cluster algebras of type A2^(1). Algebra Represent Theor., doi: 10.1007/s10468-011-9275-5.
  • 9Ding, M., Xiao, J., Xu, F.: Integral bases of cluster algebras and representations of tame quivers. Algebra Represent Theor., doi: 10.1007/s10468-011-9317-z.
  • 10Geiss, C., Leclerc, B., SchrSer, J.: Generic bases for cluster algebras and the Chamber Ansatz. J. Amer. Math. Soc., 25, 21-76 (2012).

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部