期刊文献+

ε_0-Regularity for Mean Curvature Flow from Surface to Flat Riemannian Manifold 被引量:1

ε_0-Regularity for Mean Curvature Flow from Surface to Flat Riemannian Manifold
原文传递
导出
摘要 In this paper we prove an so-regularity theorem for mean curvature flow from surface to a flat Riemannian manifold. More precisely, we prove that if the initial energy ∫∑0 |A|^2 ≤ ε0 and the initial area u0(∑0) is not large, then along the mean curvature flow, we have ∫∑t |A|^2 ≤ ε0. As an application, we obtain the long time existence and convergence result of the mean curvature flow. In this paper we prove an so-regularity theorem for mean curvature flow from surface to a flat Riemannian manifold. More precisely, we prove that if the initial energy ∫∑0 |A|^2 ≤ ε0 and the initial area u0(∑0) is not large, then along the mean curvature flow, we have ∫∑t |A|^2 ≤ ε0. As an application, we obtain the long time existence and convergence result of the mean curvature flow.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2012年第7期1475-1490,共16页 数学学报(英文版)
基金 supported by National Natural Science Foundation of China (Grant No. 10901088)
关键词 ε0-Regularity mean curvature flow ε0-Regularity, mean curvature flow
  • 相关文献

参考文献2

二级参考文献28

  • 1Altschuler, S. J., Singularities of the curve shrinking flow for space curves, J. Diff. Geom., 34, 1991, 491-514.
  • 2Chen, J. and Li, J., Mean curvature flow of surface in 4-manifolds, Adv. Math., 163, 2001, 287-309.
  • 3Chen, J. and Li, J., Singularity of mean curvature flow of Lagrangian submanifolds, Invent. Math., 156, 2004, 25-51.
  • 4Chen, J. and Li, J., Singularities of codimension two mean curvature flow of symplectic surface, preprint.
  • 5Chen, J. and Tian, G., Minimal surfaces in Riemannian 4-manifolds, Geom. Funct. Anal., 7, 1997, 873-916.
  • 6Chern, S. S. and Wolfson, J., Minimal surfaces by moving frames, Amer. J. Math., 105, 1983, 59-83.
  • 7Ecker, K. and Huisken, G., Mean curvature evolution of entire graphs, Ann. Math., 130, 1989, 453-471.
  • 8Groh, K., Schwarz, M., Smoczyk, K., et al., Mean curvature flow of monotone Lagrangian submanifolds. arXiv: math/0606428v1.
  • 9Hamilton, R. S., Harnack estimate for the mean curvature flow, J. Diff. Geom., 41, 1995, 215-226.
  • 10Han, X. and Li, J., The mean curvature flow approach to the symplectic isotropy problem, IMRN, 26, 2005, 1611-1620.

共引文献7

同被引文献1

  • 1CHEN Jing Yi Department of Mathematics.The University of British Columbia.Vancouver.B.C..Canada V6T 1Z2 E-mail:jychen@math.ubc.caLI Jia Yu Institute of Mathematics.Academy of Mathematics and System Sciences.Chinese Academy of Sciences.Beijing 100080.P.R.China Department of Mathematics.Fudan University.Shanghai 200433.P.R.China E-mail:lijia@math03.math.ac.cnTIAN Gang Department of Mathematics,MIT.Cambridge.MA 02139.U.S.A.E-mail:tian@math,mit.edu.Two-Dimensional Graphs Moving by Mean Curvature Flow[J].Acta Mathematica Sinica,English Series,2002,18(2):209-224. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部