摘要
A mixture of five commonly used pharmaceuticals and personal care products (PPCPs) was degraded using a new combined catalyst under visible light irradiation. Scanning electron microscopy and X-ray diffraction analysis revealed that the combined catalyst was composed of copper-plating iron doped Cu2O (FeCu/Cu2O). Compared with the Fe/C inner micro-circuit, the electric currents flowing between Cu and Fe increase the speed of anodic Fe dissolution. Moreover, due to the photochemical properties, Cu2O can accelerate the PPCPs degradation processes under the irradiation of visible light. In addition, shaking increased the dissolved oxygen concentration in the solution, which not only preconditioned the photo-catalysis reaction, but also set the stage for Fe reduction. According to the experimental results, we propose the possible reaction mechanism of the reaction.
A mixture of five commonly used pharmaceuticals and personal care products (PPCPs) was degraded using a new combined catalyst under visible light irradiation. Scanning electron microscopy and X-ray diffraction analysis revealed that the combined catalyst was composed of copper-plating iron doped Cu2O (FeCu/Cu2O). Compared with the Fe/C inner micro-circuit, the electric currents flowing between Cu and Fe increase the speed of anodic Fe dissolution. Moreover, due to the photochemical properties, Cu2O can accelerate the PPCPs degradation processes under the irradiation of visible light. In addition, shaking increased the dissolved oxygen concentration in the solution, which not only preconditioned the photo-catalysis reaction, but also set the stage for Fe reduction. According to the experimental results, we propose the possible reaction mechanism of the reaction.
基金
supported by the National Natural Science Foundation of China as a Youth Fund Project (No.41001340)
the Ministry of Science and Technology,People’s Republic of China as a Special Project (No.2008ZX07526-002-01)
the China Postdoctoral Science Foundation as a General Project (No. 20100471487)