期刊文献+

Species-dependent effects of the phenolic herbicide ioxynil with potential thyroid hormone disrupting activity: modulation of its cellular uptake and activity by interaction with serum thyroid hormone-binding proteins 被引量:3

Species-dependent effects of the phenolic herbicide ioxynil with potential thyroid hormone disrupting activity: modulation of its cellular uptake and activity by interaction with serum thyroid hormone-binding proteins
原文传递
导出
摘要 Ioxynil, a phenolic herbicide, is known to exert thyroid hormone (TH) disrupting activity by interfering with TH-binding to plasma proteins and a step of the cellular TH-signaling pathway in restricted animal species. However, comparative studies are still lacking on the TH disruption. We investigated the interaction of [125I] ioxynil with serum proteins from rainbow trout, bullfrog, chicken, pig, rat, and mouse, using native polyacrylamide gel electrophoresis. Candidate ioxynil-binding proteins, which included lipoproteins, albumin and transthyretin (TTR), differed among the vertebrates tested. Rainbow trout and bullfrog tadpole serum had the lowest binding activity for ioxynil, whereas the eutherian serum had the highest binding activity. The cellular uptake of, and response to, ioxynil were suppressed by rat serum greater than by tadpole serum. The cellular uptake of [125I]ioxynil competed strongly with phenols with a single ring, but not with THs. Our results suggested that ioxynil interferes with TH homeostasis in plasma and with a step of cellular TH-signaling pathway other than TH-uptake system, in a species-specific manner. Ioxynil, a phenolic herbicide, is known to exert thyroid hormone (TH) disrupting activity by interfering with TH-binding to plasma proteins and a step of the cellular TH-signaling pathway in restricted animal species. However, comparative studies are still lacking on the TH disruption. We investigated the interaction of [125I] ioxynil with serum proteins from rainbow trout, bullfrog, chicken, pig, rat, and mouse, using native polyacrylamide gel electrophoresis. Candidate ioxynil-binding proteins, which included lipoproteins, albumin and transthyretin (TTR), differed among the vertebrates tested. Rainbow trout and bullfrog tadpole serum had the lowest binding activity for ioxynil, whereas the eutherian serum had the highest binding activity. The cellular uptake of, and response to, ioxynil were suppressed by rat serum greater than by tadpole serum. The cellular uptake of [125I]ioxynil competed strongly with phenols with a single ring, but not with THs. Our results suggested that ioxynil interferes with TH homeostasis in plasma and with a step of cellular TH-signaling pathway other than TH-uptake system, in a species-specific manner.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第5期949-955,共7页 环境科学学报(英文版)
基金 supported by the Grant-in Aid of Science Research(C) (No. 20510062 to K. Yamauchi) from Japan Society for Promotion of Science
关键词 endocrine disruption ioxynil thyroid hormone serum transthyretin uptake endocrine disruption ioxynil thyroid hormone serum transthyretin uptake
  • 相关文献

参考文献1

二级参考文献1

共引文献7

同被引文献19

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部