期刊文献+

基于小波变换的超混沌系统同步 被引量:3

Hyper-chaotic synchronization with filter based on wavelet transformation
下载PDF
导出
摘要 提出了一种基于反馈控制与小波变换相结合的超混沌系统同步方法。在发送端 ,将系统的部分信号进行小波变换去掉细节信息后发送 ,在接收端重构出低频信号 ,将其与接收端信号的差进行离散反馈 ,可以使两个结构相同的超混沌系统达到混沌同步。同时 ,参数失配和噪声对同步的影响被讨论。应用本同步方法可将发送信号压缩后传送 ,节约系统资源 ;滤去发送信号的高频成分 ,减小干扰对同步信号中的影响。文中给出了仿真验证结果。 A kind of chaotic synchronization method by combining feedback control with wavelet transformation is presented in the paper. In the transmitter, part signals are transformed by wavelet and the detail informatin is removed. In the receiver, the component with low frequency is reconstructed and discrete feedback is used, we show that synchronization of two identical structure hyper chaotic systems is attained. The effect of non match parameter and noise on chaotic synchronization is discussed. Using the synchronous method, the transmitting signal is transpotred in compressible way, system resource is saved, the component with high frequency is filtered and the effect of disturbance on synchronization is reduced. The synchronization method is illustrated by numerical simulation experiment.
出处 《电波科学学报》 EI CSCD 2000年第1期25-29,共5页 Chinese Journal of Radio Science
基金 国家自然科学基金!(6 9790 2 2 ) 国家教委博士点基金资助项目!(970 5 6 116 )
关键词 超混沌同步 混沌通信 小波变换 Four order Chua's oscillator Hyper chaotic synchronization Chaotic communication Wavelet transformation
  • 相关文献

参考文献4

  • 1丘水生,Proc IEEEISCAS’97,1997年,1033页
  • 2Peng J H,Phys Rev Lett,1996年,76卷,6期,904页
  • 3程正兴(译),小波分析导论,1995年
  • 4Lai Y C,Phys Rev.E,1994年,50卷,3期,1894页

同被引文献29

  • 1钟国群.蔡氏电路混沌同步保密通讯[J].电路与系统学报,1996,1(1):19-29. 被引量:43
  • 2方锦清.非线性系统中混沌的控制与同步及其应用前景(一)[J].物理学进展,1996,16(1):1-74. 被引量:137
  • 3王绍明,岳超源,罗海庚.基于未知参数观测器的Liu混沌系统参数辨识[J].华中科技大学学报(自然科学版),2007,35(6):47-49. 被引量:5
  • 4Ott E,Grebogi C,Yorke J.Controlling chaos[J].Phys Rev Let,1990,64(11):1196.
  • 5Chen G,Chen Y,Ogmen H.Identifying chaotic systems via a Wiener-type cascade model[J].IEEE Control Systems,1997,17(5):29.
  • 6Poznyak A S,Yu W,Sanchez E N.Identification and control of unknown chaotic systems via dynamic neural networks[J].IEEE Transactions on Circuits and Systems Ⅰ,1999,46(12):1491.
  • 7Wang Y C,Thorp J S,Macdonald N C.Chaos in MEMS,parameter estimation and its potential application[J].IEEE Trans-actions on Circuits and Systems Ⅰ,1998,45(10):1013.
  • 8Parlitz O.Estimating modal parameters from times series by auto-synchronization[J].Physical Review Letters,1996,76(8):1232.
  • 9Tong X,Mard N.Chaotic motion of a symmetric gyro subjected to a harmonic base excitation[J].J Appl Mechanics Transactions of American Society of Mechanical Eng,2001,68:681.
  • 10Lei Y,Xu W,Zheng H.Synchronization of two chaotic nonlinear gyros using active control[J].Physics Letters A,2005,343:153.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部