期刊文献+

热致相分离法iPP/nano-SiO_2杂化中空纤维膜的结构与透过性能 被引量:1

Morphology and permeability of iPP/nano-SiO_2 mixed hollow fiber membrane via thermally induced phase separation
下载PDF
导出
摘要 通过熔融共混等规聚丙烯(iPP)/邻苯二甲酸二丁酯(DBP)/邻苯二甲酸二辛酯(DOP)/纳米二氧化硅(nano-SiO2)体系,采用热致相分离法(TIPS)制备了iPP中空纤维膜。对膜结构与透过性能进行了表征。用示差扫描量热仪(DSC)测定了体系的iPP动态结晶温度,融化峰值温度数值表明结晶只存在α晶型。X光电子能谱(XPS)表明nano-SiO2向膜表面发生了迁移,使得膜的亲水性有所提高,膜的接触角由120.05°降低到101.05°,降低了19.7%。随着nano-SiO2添加量的增加,膜的孔隙率和纯水通量均呈现先增大后减小的趋势。膜的孔隙率增加了20.2%,纯水通量增大了21.7%。经过拉伸后的杂化膜,孔隙率增大了27.4%,纯水通量增加了211%。研究表明:通过向铸膜液中添加nano-SiO2,可以优化膜结构,并改善膜的亲/疏水性以及透过性能。 By melting and blending isotactic polypropylene (iPP)/di-n-butyl phthalate (DBP)/dioctyl phthalate (DOP)/nano-SiO2 system, iPP hollow fiber membrane is prepared via thermally induced phase separation (TIPS) method. The membrane structure and properties are characterized. Dynamic crystallization temperatures of iPP are investigated with DSC. The melting peak temperature values show that there is only α type in the crystal. Due to migrating of nano-SiO2 from inside to surface of the membrane, which is tested by X-ray photoelectron spectroscopy, hydrophilicity of the membrane surface is enhanced. Contact angle of membrane surface reduce from 120. 05%to 101.05%. The porosity and the pure water flux of the membrane increase firstly and then decrease, with increasing the amount of nano-SiO2. The porosity is increased by 20. 2% and the pure water flux of the membrane is increased by 18%. After stretching, the porosity of the hybrid membrane is increased by 27.4% and the pure water flux of the membrane is increased by 211%. It is suggested that by adding proper amount of nano-SiO2, membrane structure can be improved. The hydrophilicity/ hydrophobicity and the permeability of the membrane can be raised as well.
出处 《现代化工》 CAS CSCD 北大核心 2012年第5期49-53,共5页 Modern Chemical Industry
关键词 等规聚丙烯 纳米二氧化硅 热致相分离 中空纤维膜 透过性能 isotactic polypropylene (iPP) nano-SiO2 thermally induced phased separation (TIPS) hollow fiber membrane permeability
  • 相关文献

参考文献13

  • 1Castro A J. Method for making microporous product : US, 4247498 [P]. 1980 -01 -07.
  • 2Lloyd D R, Kinzer K E, Tseng H S. Microporous membrane forma- tion via thermally induced phase separation. I. Solid-liquid phase separation [ J ]. J Membr Sci, 1990,52 ( 3 ) :239 - 261.
  • 3Lloyd D R, Kim S S, Kinzer K E. Microporous membrane formation via thermally-induced phase separation. Ⅱ. Liquid-liquid phase separation [ J ]. J Membr Sci, 1991,64 ( 1/2 ) : 1 - 11.
  • 4Matsuyama H, Maki T, Teramoto M, et al. Effect of organic solvents on membrane formation by phase separation with supercritical CO2 [J]. J Membr Sci,2002,204(1/2) :81 -87.
  • 5Van de Witte P,Dijkstra P J,Van den Berg J W A,et al. Phase separation processes in polymer solutions in relation to membrane formation[J]. J Membr Sci,1996,117(1/2) :1 -31.
  • 6Tsai F, Torkelson J M. Microporous poly (methyl methacrylate) membranes : Effect of a low-viscosity solvent on the formation mech- anism[ J]. nacromolecules, 1990,23 (23) :4983 -4989.
  • 7Matsuyama H, Berghmans S, Lloyd D R. Formation of hydrophilic microporous membranes via thermally induced phase separation [J]. J Membr Sci,1998,142(2) :213 -224.
  • 8Qin J J, Cao Y M, Oo M H. Preparation of poly( ether sulfone) hol- low fiber UF membrane for removal of NOM [ J ]. Journal of Applied Polymer Science,2006,99 ( 1 ) :430 - 435.
  • 9Yang Z S, Li P L, Wang S C, et al. Preparation of iPP hollow fiber microporous membranes via thermally induced phase separation with Co-solvent of DBP and DOP[ J]. Desalination ,2006,192 ( 1/ 2/3) :168 - 181.
  • 10芦艳,于水利,孙先达,蔡报祥.有机膜的无机改性及其性能研究[J].环境科学,2007,28(2):371-376. 被引量:17

二级参考文献54

共引文献46

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部